Estimating Forest Fire Losses Using Stochastic Approach: Case Study of the Kroumiria Mountains (Northwestern Tunisia)

Kroumiria Mountains (northwestern Tunisia) have experienced major fires, making them the main loss reason of Tunisian forested areas. The ability of accurately forecasting or modeling forest fire areas may significantly aid optimizing fire-fighting strategies. However, there are still limitations in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied artificial intelligence 2018-11, Vol.32 (9-10), p.882-906
Hauptverfasser: Toujani, Ahmed, Achour, Hammadi, Faïz, Sami
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Kroumiria Mountains (northwestern Tunisia) have experienced major fires, making them the main loss reason of Tunisian forested areas. The ability of accurately forecasting or modeling forest fire areas may significantly aid optimizing fire-fighting strategies. However, there are still limitations in the empirical study of forest fire loss estimation because the poor availability and low quality of fire data. In this study, a stochastic approach based on Markov process was developed for the prediction of burned areas, using available meteorological data sets and GIS layers related to the forest under analysis. The Self-organizing map (SOM) was initially used to classify spatiotemporal factors influencing the fire behavior. Subsequently, the SOM clusters were incorporated into a Hidden Markov Model (HMM) framework to model their corresponding burned areas. Results achieved using a database of 829 forest fires records between 1985 and 2016, showed the appropriateness of the HMM approach for the prediction of burned areas compared with a state-of-the art machine learning methods. The transition probability matrix (TPM) and the emission probability matrix (EPM) were also analyzed to further understand the spatiotemporal patterns of fire losses.
ISSN:0883-9514
1087-6545
DOI:10.1080/08839514.2018.1514808