Investigation of the influence of modulation of P-glycoprotein by a multiple dosing regimen of tamoxifen on the pharmacokinetics and toxicodynamics of doxorubicin

The in vivo effect of modulators of P-glycoprotein (Pgp) on organ accumulation of substrates of Pgp has not been fully investigated. We investigated the influence of a Pgp modulator (tamoxifen, TAM) on the pharmacokinetics and toxicodynamics of a Pgp substrate (doxorubicin, DOX) in rats. TAM was adm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer chemotherapy and pharmacology 2005-11, Vol.56 (5), p.497-509
Hauptverfasser: DARVARI, Ramin, BOROUJERDI, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in vivo effect of modulators of P-glycoprotein (Pgp) on organ accumulation of substrates of Pgp has not been fully investigated. We investigated the influence of a Pgp modulator (tamoxifen, TAM) on the pharmacokinetics and toxicodynamics of a Pgp substrate (doxorubicin, DOX) in rats. TAM was administered daily for 11 days before the administration of DOX in male Sprague-Dawley rats, with all doses being clinically relevant. The experimental design of the project consisted of two different protocols. One was to investigate the effect of DOX on the time course of Pgp-ATPase activity, sarcoplasmic reticulum Ca(2+) -ATPase (SERCA) activity, and DOX concentration in the heart, liver, and kidneys of TAM-pretreated animals; the other protocol was to study the effect of TAM pretreatment on the disposition of DOX in the body by investigating its time course in plasma, urine and bile. The simultaneous curve fitting of plasma data with urine and bile data with the help of the related pharmacokinetic equations provided the calculated parameters and constants. The first-order rate constants between the central and the myocardial compartments (k(1H) and k(H1)) were decreased in the TAM-treated group. The treatment also significantly reduced the k(1H)/k(H1) ratio in comparison to that of the control group. The first-order biliary elimination rate constant (k(b)) was significantly decreased (29%) in the TAM-treated group. The reduction was estimated in comparison with that of the control group. This reduction could be attributed to the inhibitory effect of TAM on Pgp located on biliary canicular membranes. The initial reduction of Pgp activity in TAM-treated group was at 60% of the basal level. The activity declined and reached a plateau at 20% of the basal activity after 6 h and remained at that level for 24 h. The area under the curves of Pgp-ATPase activity time (AUC(Activity 0-24)) following DOX administration in TAM-treated group was significantly lower than that of the control group, indicating an overall inhibitory effect of TAM on Pgp-ATPase activity under the protocol of this study. The area under the curves of the SERCA activity-time curve following DOX administration in TAM-treated group demonstrated a 15% reduction in AUC(Activity 0-24) in comparison with that of the control group, an indication of increased toxicity. The amount of myocardial Pgp in the 24-h period following DOX administration was comparable to the control group and showed no significant d
ISSN:0344-5704
1432-0843
DOI:10.1007/s00280-005-1001-8