Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph
Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-12, Vol.558, p.174-185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 185 |
---|---|
container_issue | |
container_start_page | 174 |
container_title | Linear algebra and its applications |
container_volume | 558 |
creator | Tian, Fenglei Wong, Dein |
description | Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized. |
doi_str_mv | 10.1016/j.laa.2018.08.026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135088817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518304075</els_id><sourcerecordid>2135088817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAU8d02afqR4ksUvWBBEz2GaTLsp3bQm7Yr_3qzrWRhmhuG9mTePkGvOVpzx4rZb9QCrlHG5YjHS4oQsuCxFwmVenJIFY2mWiLLKz8lFCB1jLCtZuiDmDXuY7OBojdMXoqPTFukOJr21rqVu3tXoKTjzOw-oh9j24FsMEzU2TOA00g2MPWgLjqJt0e2hn5EODQXaehi3l-SsgT7g1V9dko_Hh_f1c7J5fXpZ328SLdJ8irmokTemzmVlCpELA2WZVUYWaNBoKbK6BsElVhlUMpUV56zOBBZ5XpWy1GJJbo57Rz98zlGh6obZu3hSpVzkTErJy4jiR5T2QwgeGzV6uwP_rThTBzNVp6KZ6mCmYjHSInLujhyM8vcWvQraYnzdWI96Umaw_7B_AP8ifOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135088817</pqid></control><display><type>article</type><title>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tian, Fenglei ; Wong, Dein</creator><creatorcontrib>Tian, Fenglei ; Wong, Dein</creatorcontrib><description>Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.08.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Distance Laplacian eigenvalue ; Distance Laplacian matrix ; Eigenvalues ; Graph matching ; Graph theory ; Laplace transforms ; Linear algebra ; Lower bounds ; Matching number</subject><ispartof>Linear algebra and its applications, 2018-12, Vol.558, p.174-185</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Dec 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</citedby><cites>FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.08.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Tian, Fenglei</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><title>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</title><title>Linear algebra and its applications</title><description>Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.</description><subject>Distance Laplacian eigenvalue</subject><subject>Distance Laplacian matrix</subject><subject>Eigenvalues</subject><subject>Graph matching</subject><subject>Graph theory</subject><subject>Laplace transforms</subject><subject>Linear algebra</subject><subject>Lower bounds</subject><subject>Matching number</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAU8d02afqR4ksUvWBBEz2GaTLsp3bQm7Yr_3qzrWRhmhuG9mTePkGvOVpzx4rZb9QCrlHG5YjHS4oQsuCxFwmVenJIFY2mWiLLKz8lFCB1jLCtZuiDmDXuY7OBojdMXoqPTFukOJr21rqVu3tXoKTjzOw-oh9j24FsMEzU2TOA00g2MPWgLjqJt0e2hn5EODQXaehi3l-SsgT7g1V9dko_Hh_f1c7J5fXpZ328SLdJ8irmokTemzmVlCpELA2WZVUYWaNBoKbK6BsElVhlUMpUV56zOBBZ5XpWy1GJJbo57Rz98zlGh6obZu3hSpVzkTErJy4jiR5T2QwgeGzV6uwP_rThTBzNVp6KZ6mCmYjHSInLujhyM8vcWvQraYnzdWI96Umaw_7B_AP8ifOg</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tian, Fenglei</creator><creator>Wong, Dein</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181201</creationdate><title>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</title><author>Tian, Fenglei ; Wong, Dein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Distance Laplacian eigenvalue</topic><topic>Distance Laplacian matrix</topic><topic>Eigenvalues</topic><topic>Graph matching</topic><topic>Graph theory</topic><topic>Laplace transforms</topic><topic>Linear algebra</topic><topic>Lower bounds</topic><topic>Matching number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Fenglei</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Fenglei</au><au>Wong, Dein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>558</volume><spage>174</spage><epage>185</epage><pages>174-185</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.08.026</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0024-3795 |
ispartof | Linear algebra and its applications, 2018-12, Vol.558, p.174-185 |
issn | 0024-3795 1873-1856 |
language | eng |
recordid | cdi_proquest_journals_2135088817 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Distance Laplacian eigenvalue Distance Laplacian matrix Eigenvalues Graph matching Graph theory Laplace transforms Linear algebra Lower bounds Matching number |
title | Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20between%20the%20matching%20number%20and%20the%20second%20largest%20distance%20Laplacian%20eigenvalue%20of%20a%20graph&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Tian,%20Fenglei&rft.date=2018-12-01&rft.volume=558&rft.spage=174&rft.epage=185&rft.pages=174-185&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.08.026&rft_dat=%3Cproquest_cross%3E2135088817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135088817&rft_id=info:pmid/&rft_els_id=S0024379518304075&rfr_iscdi=true |