Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph

Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-12, Vol.558, p.174-185
Hauptverfasser: Tian, Fenglei, Wong, Dein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue
container_start_page 174
container_title Linear algebra and its applications
container_volume 558
creator Tian, Fenglei
Wong, Dein
description Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.
doi_str_mv 10.1016/j.laa.2018.08.026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2135088817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0024379518304075</els_id><sourcerecordid>2135088817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvAU8d02afqR4ksUvWBBEz2GaTLsp3bQm7Yr_3qzrWRhmhuG9mTePkGvOVpzx4rZb9QCrlHG5YjHS4oQsuCxFwmVenJIFY2mWiLLKz8lFCB1jLCtZuiDmDXuY7OBojdMXoqPTFukOJr21rqVu3tXoKTjzOw-oh9j24FsMEzU2TOA00g2MPWgLjqJt0e2hn5EODQXaehi3l-SsgT7g1V9dko_Hh_f1c7J5fXpZ328SLdJ8irmokTemzmVlCpELA2WZVUYWaNBoKbK6BsElVhlUMpUV56zOBBZ5XpWy1GJJbo57Rz98zlGh6obZu3hSpVzkTErJy4jiR5T2QwgeGzV6uwP_rThTBzNVp6KZ6mCmYjHSInLujhyM8vcWvQraYnzdWI96Umaw_7B_AP8ifOg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2135088817</pqid></control><display><type>article</type><title>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Tian, Fenglei ; Wong, Dein</creator><creatorcontrib>Tian, Fenglei ; Wong, Dein</creatorcontrib><description>Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.</description><identifier>ISSN: 0024-3795</identifier><identifier>EISSN: 1873-1856</identifier><identifier>DOI: 10.1016/j.laa.2018.08.026</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Distance Laplacian eigenvalue ; Distance Laplacian matrix ; Eigenvalues ; Graph matching ; Graph theory ; Laplace transforms ; Linear algebra ; Lower bounds ; Matching number</subject><ispartof>Linear algebra and its applications, 2018-12, Vol.558, p.174-185</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright American Elsevier Company, Inc. Dec 1, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</citedby><cites>FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.laa.2018.08.026$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Tian, Fenglei</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><title>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</title><title>Linear algebra and its applications</title><description>Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.</description><subject>Distance Laplacian eigenvalue</subject><subject>Distance Laplacian matrix</subject><subject>Eigenvalues</subject><subject>Graph matching</subject><subject>Graph theory</subject><subject>Laplace transforms</subject><subject>Linear algebra</subject><subject>Lower bounds</subject><subject>Matching number</subject><issn>0024-3795</issn><issn>1873-1856</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvAU8d02afqR4ksUvWBBEz2GaTLsp3bQm7Yr_3qzrWRhmhuG9mTePkGvOVpzx4rZb9QCrlHG5YjHS4oQsuCxFwmVenJIFY2mWiLLKz8lFCB1jLCtZuiDmDXuY7OBojdMXoqPTFukOJr21rqVu3tXoKTjzOw-oh9j24FsMEzU2TOA00g2MPWgLjqJt0e2hn5EODQXaehi3l-SsgT7g1V9dko_Hh_f1c7J5fXpZ328SLdJ8irmokTemzmVlCpELA2WZVUYWaNBoKbK6BsElVhlUMpUV56zOBBZ5XpWy1GJJbo57Rz98zlGh6obZu3hSpVzkTErJy4jiR5T2QwgeGzV6uwP_rThTBzNVp6KZ6mCmYjHSInLujhyM8vcWvQraYnzdWI96Umaw_7B_AP8ifOg</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Tian, Fenglei</creator><creator>Wong, Dein</creator><general>Elsevier Inc</general><general>American Elsevier Company, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20181201</creationdate><title>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</title><author>Tian, Fenglei ; Wong, Dein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-c36be1fdb589d6353da7749d86ededc834bba318e94a98289110b43e6559787c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Distance Laplacian eigenvalue</topic><topic>Distance Laplacian matrix</topic><topic>Eigenvalues</topic><topic>Graph matching</topic><topic>Graph theory</topic><topic>Laplace transforms</topic><topic>Linear algebra</topic><topic>Lower bounds</topic><topic>Matching number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, Fenglei</creatorcontrib><creatorcontrib>Wong, Dein</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Linear algebra and its applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, Fenglei</au><au>Wong, Dein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph</atitle><jtitle>Linear algebra and its applications</jtitle><date>2018-12-01</date><risdate>2018</risdate><volume>558</volume><spage>174</spage><epage>185</epage><pages>174-185</pages><issn>0024-3795</issn><eissn>1873-1856</eissn><abstract>Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.laa.2018.08.026</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0024-3795
ispartof Linear algebra and its applications, 2018-12, Vol.558, p.174-185
issn 0024-3795
1873-1856
language eng
recordid cdi_proquest_journals_2135088817
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present)
subjects Distance Laplacian eigenvalue
Distance Laplacian matrix
Eigenvalues
Graph matching
Graph theory
Laplace transforms
Linear algebra
Lower bounds
Matching number
title Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A57%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20between%20the%20matching%20number%20and%20the%20second%20largest%20distance%20Laplacian%20eigenvalue%20of%20a%20graph&rft.jtitle=Linear%20algebra%20and%20its%20applications&rft.au=Tian,%20Fenglei&rft.date=2018-12-01&rft.volume=558&rft.spage=174&rft.epage=185&rft.pages=174-185&rft.issn=0024-3795&rft.eissn=1873-1856&rft_id=info:doi/10.1016/j.laa.2018.08.026&rft_dat=%3Cproquest_cross%3E2135088817%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2135088817&rft_id=info:pmid/&rft_els_id=S0024379518304075&rfr_iscdi=true