Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph

Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications 2018-12, Vol.558, p.174-185
Hauptverfasser: Tian, Fenglei, Wong, Dein
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2018.08.026