Relation between the matching number and the second largest distance Laplacian eigenvalue of a graph
Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂...
Gespeichert in:
Veröffentlicht in: | Linear algebra and its applications 2018-12, Vol.558, p.174-185 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G be a connected simple graph with matching number m(G). The second largest distance Laplacian eigenvalue of G is denoted by ∂2(G). In this paper, we investigate the relation between the matching number and the second largest distance Laplacian eigenvalue of G, establishing the lower bounds of ∂2(G) in terms of m(G). Moreover, all the extremal graphs attaining the lower bounds are completely characterized. |
---|---|
ISSN: | 0024-3795 1873-1856 |
DOI: | 10.1016/j.laa.2018.08.026 |