An intuitionistic [lamda]-calculus with exceptions

We introduce a typed λ-calculus which allows the use of exceptions in the ML style. It is an extension of the system $AF_2$ of Krivine & Leivant (Krivine, 1990; Leivant, 1983). We show its main properties: confluence, strong normalization and weak subject reduction. The system satisfies the &quo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional programming 2005-01, Vol.15 (1), p.33
Hauptverfasser: DAVID, R, MOUNIER, G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a typed λ-calculus which allows the use of exceptions in the ML style. It is an extension of the system $AF_2$ of Krivine & Leivant (Krivine, 1990; Leivant, 1983). We show its main properties: confluence, strong normalization and weak subject reduction. The system satisfies the "the proof as program" paradigm as in $AF_2$. Moreover, the underlined logic of our system is intuitionistic logic. [PUBLICATION ABSTRACT]
ISSN:0956-7968
1469-7653