An intuitionistic [lamda]-calculus with exceptions
We introduce a typed λ-calculus which allows the use of exceptions in the ML style. It is an extension of the system $AF_2$ of Krivine & Leivant (Krivine, 1990; Leivant, 1983). We show its main properties: confluence, strong normalization and weak subject reduction. The system satisfies the &quo...
Gespeichert in:
Veröffentlicht in: | Journal of functional programming 2005-01, Vol.15 (1), p.33 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a typed λ-calculus which allows the use of exceptions in the ML style. It is an extension of the system $AF_2$ of Krivine & Leivant (Krivine, 1990; Leivant, 1983). We show its main properties: confluence, strong normalization and weak subject reduction. The system satisfies the "the proof as program" paradigm as in $AF_2$. Moreover, the underlined logic of our system is intuitionistic logic. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0956-7968 1469-7653 |