An information entropy based-clustering algorithm for heterogeneous wireless sensor networks

This paper proposes a novel dynamic, distributive, and self-organizing entropy based clustering scheme that benefits from the local information of sensor nodes measured in terms of entropy and use that as criteria for cluster head election and cluster formation. It divides the WSN into two-levels of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wireless networks 2020-04, Vol.26 (3), p.1869-1886
Hauptverfasser: Osamy, Walid, Salim, Ahmed, Khedr, Ahmed M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper proposes a novel dynamic, distributive, and self-organizing entropy based clustering scheme that benefits from the local information of sensor nodes measured in terms of entropy and use that as criteria for cluster head election and cluster formation. It divides the WSN into two-levels of hierarchy and three-levels of energy heterogeneity of sensor nodes. The simulation results reveal that the proposed approach outperforms existing baseline algorithms in terms of energy consumption, stability period, and the network lifetime.
ISSN:1022-0038
1572-8196
DOI:10.1007/s11276-018-1877-y