Effect of exogenous nitric oxide on sulfur and nitrate assimilation pathway enzymes in maize (Zea mays L.) under drought stress

The present study aimed at investigating the effects of foliar applied nitric oxide (as SNP [sodium nitroprusside]) on sulfur (glutathione reductase, guaiacol peroxidase, and glutathione S -transferase) and nitrate assimilation (nitrite and nitrate reductase) pathway enzymes in maize ( Zea mays L.)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta physiologiae plantarum 2018-12, Vol.40 (12), p.1-14, Article 206
Hauptverfasser: Majeed, Sadia, Nawaz, Fahim, Naeem, Muhammad, Ashraf, Muhammad Yasin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The present study aimed at investigating the effects of foliar applied nitric oxide (as SNP [sodium nitroprusside]) on sulfur (glutathione reductase, guaiacol peroxidase, and glutathione S -transferase) and nitrate assimilation (nitrite and nitrate reductase) pathway enzymes in maize ( Zea mays L.) exposed to water deficit conditions. The seedlings of a drought tolerant (NK8711) and sensitive (P1574) maize hybrid were applied with various SNP doses (0, 50, 100, 150, and 200 µM) under normal and drought stress conditions. Foliar spray of 100 µM markedly improved water status and chlorophyll contents and alleviated drought-induced oxidative damages through increased antioxidant (catalase, ascorbate peroxidase, and superoxide dismutase) activities in both maize hybrids. Moreover, exogenous SNP supply increased nitrite and nitrate reductase activities and upregulated glutathione reductase, glutathione S -transferase, and guaiacol peroxidase compared to no SNP supply. Interestingly, the negative effects of excess NO generation at high SNP doses (150, 200 µM) were more pronounced in P1574 than NK8711 leading to lower biomass accumulation in drought-sensitive hybrid.
ISSN:0137-5881
1861-1664
DOI:10.1007/s11738-018-2780-y