Local Well-Posedness of an Approximate Equation for SQG Fronts

We prove local well-posedness in the Sobolev spaces H ˙ s ( T ) , with s > 7 / 2 , of an initial value problem for a nonlocal, cubically nonlinear, dispersive equation that provides an approximate description of the evolution of surface quasi-geostrophic fronts with small slopes.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2018-12, Vol.20 (4), p.1967-1984
Hauptverfasser: Hunter, John K., Shu, Jingyang, Zhang, Qingtian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1984
container_issue 4
container_start_page 1967
container_title Journal of mathematical fluid mechanics
container_volume 20
creator Hunter, John K.
Shu, Jingyang
Zhang, Qingtian
description We prove local well-posedness in the Sobolev spaces H ˙ s ( T ) , with s > 7 / 2 , of an initial value problem for a nonlocal, cubically nonlinear, dispersive equation that provides an approximate description of the evolution of surface quasi-geostrophic fronts with small slopes.
doi_str_mv 10.1007/s00021-018-0396-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2133937421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133937421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9d5a6f5f5075e8398f038f11450e2c644669408c24f6ff872446514cde3775543</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyP7kIpbRVKKioeAzLNpGWddMmu6D99Kas6MnTDMN7bx4_hC4pXFMAfZMBgFEC1BDgVpH9ERpRwRhRVrLj352ZU3SW8waAamnZCN0uY101-M03DXmM2a9anzOOAVctnmy3KX6uP6rO49mur7p1bHGICT8_LfA8xbbL5-gkVE32Fz9zjF7ns5fpHVk-LO6nkyWpOVUdsStZqSCDBC294dYE4CZQKiR4VishlLICTM1EUCEYzcpFUlGvPNdaSsHH6GrILY12vc-d28Q-teWlY5Rzy7Uoc4zooKpTzDn54Lap1E9fjoI7YHIDJlcwuQMmty8eNnhy0bbvPv0l_2_6BkNKaCE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133937421</pqid></control><display><type>article</type><title>Local Well-Posedness of an Approximate Equation for SQG Fronts</title><source>SpringerLink Journals - AutoHoldings</source><creator>Hunter, John K. ; Shu, Jingyang ; Zhang, Qingtian</creator><creatorcontrib>Hunter, John K. ; Shu, Jingyang ; Zhang, Qingtian</creatorcontrib><description>We prove local well-posedness in the Sobolev spaces H ˙ s ( T ) , with s &gt; 7 / 2 , of an initial value problem for a nonlocal, cubically nonlinear, dispersive equation that provides an approximate description of the evolution of surface quasi-geostrophic fronts with small slopes.</description><identifier>ISSN: 1422-6928</identifier><identifier>EISSN: 1422-6952</identifier><identifier>DOI: 10.1007/s00021-018-0396-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary value problems ; Classical and Continuum Physics ; Fluid mechanics ; Fluid- and Aerodynamics ; Mathematical Methods in Physics ; Physics ; Physics and Astronomy ; Sobolev space ; Theoretical mathematics ; Well posed problems</subject><ispartof>Journal of mathematical fluid mechanics, 2018-12, Vol.20 (4), p.1967-1984</ispartof><rights>Springer Nature Switzerland AG 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9d5a6f5f5075e8398f038f11450e2c644669408c24f6ff872446514cde3775543</citedby><cites>FETCH-LOGICAL-c316t-9d5a6f5f5075e8398f038f11450e2c644669408c24f6ff872446514cde3775543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00021-018-0396-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00021-018-0396-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Hunter, John K.</creatorcontrib><creatorcontrib>Shu, Jingyang</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><title>Local Well-Posedness of an Approximate Equation for SQG Fronts</title><title>Journal of mathematical fluid mechanics</title><addtitle>J. Math. Fluid Mech</addtitle><description>We prove local well-posedness in the Sobolev spaces H ˙ s ( T ) , with s &gt; 7 / 2 , of an initial value problem for a nonlocal, cubically nonlinear, dispersive equation that provides an approximate description of the evolution of surface quasi-geostrophic fronts with small slopes.</description><subject>Boundary value problems</subject><subject>Classical and Continuum Physics</subject><subject>Fluid mechanics</subject><subject>Fluid- and Aerodynamics</subject><subject>Mathematical Methods in Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Sobolev space</subject><subject>Theoretical mathematics</subject><subject>Well posed problems</subject><issn>1422-6928</issn><issn>1422-6952</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvAc3TyP7kIpbRVKKioeAzLNpGWddMmu6D99Kas6MnTDMN7bx4_hC4pXFMAfZMBgFEC1BDgVpH9ERpRwRhRVrLj352ZU3SW8waAamnZCN0uY101-M03DXmM2a9anzOOAVctnmy3KX6uP6rO49mur7p1bHGICT8_LfA8xbbL5-gkVE32Fz9zjF7ns5fpHVk-LO6nkyWpOVUdsStZqSCDBC294dYE4CZQKiR4VishlLICTM1EUCEYzcpFUlGvPNdaSsHH6GrILY12vc-d28Q-teWlY5Rzy7Uoc4zooKpTzDn54Lap1E9fjoI7YHIDJlcwuQMmty8eNnhy0bbvPv0l_2_6BkNKaCE</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Hunter, John K.</creator><creator>Shu, Jingyang</creator><creator>Zhang, Qingtian</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20181201</creationdate><title>Local Well-Posedness of an Approximate Equation for SQG Fronts</title><author>Hunter, John K. ; Shu, Jingyang ; Zhang, Qingtian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9d5a6f5f5075e8398f038f11450e2c644669408c24f6ff872446514cde3775543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Boundary value problems</topic><topic>Classical and Continuum Physics</topic><topic>Fluid mechanics</topic><topic>Fluid- and Aerodynamics</topic><topic>Mathematical Methods in Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Sobolev space</topic><topic>Theoretical mathematics</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hunter, John K.</creatorcontrib><creatorcontrib>Shu, Jingyang</creatorcontrib><creatorcontrib>Zhang, Qingtian</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of mathematical fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hunter, John K.</au><au>Shu, Jingyang</au><au>Zhang, Qingtian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Local Well-Posedness of an Approximate Equation for SQG Fronts</atitle><jtitle>Journal of mathematical fluid mechanics</jtitle><stitle>J. Math. Fluid Mech</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>20</volume><issue>4</issue><spage>1967</spage><epage>1984</epage><pages>1967-1984</pages><issn>1422-6928</issn><eissn>1422-6952</eissn><abstract>We prove local well-posedness in the Sobolev spaces H ˙ s ( T ) , with s &gt; 7 / 2 , of an initial value problem for a nonlocal, cubically nonlinear, dispersive equation that provides an approximate description of the evolution of surface quasi-geostrophic fronts with small slopes.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00021-018-0396-z</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1422-6928
ispartof Journal of mathematical fluid mechanics, 2018-12, Vol.20 (4), p.1967-1984
issn 1422-6928
1422-6952
language eng
recordid cdi_proquest_journals_2133937421
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Classical and Continuum Physics
Fluid mechanics
Fluid- and Aerodynamics
Mathematical Methods in Physics
Physics
Physics and Astronomy
Sobolev space
Theoretical mathematics
Well posed problems
title Local Well-Posedness of an Approximate Equation for SQG Fronts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T10%3A01%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Local%20Well-Posedness%20of%20an%20Approximate%20Equation%20for%20SQG%20Fronts&rft.jtitle=Journal%20of%20mathematical%20fluid%20mechanics&rft.au=Hunter,%20John%20K.&rft.date=2018-12-01&rft.volume=20&rft.issue=4&rft.spage=1967&rft.epage=1984&rft.pages=1967-1984&rft.issn=1422-6928&rft.eissn=1422-6952&rft_id=info:doi/10.1007/s00021-018-0396-z&rft_dat=%3Cproquest_cross%3E2133937421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133937421&rft_id=info:pmid/&rfr_iscdi=true