Local Well-Posedness of an Approximate Equation for SQG Fronts

We prove local well-posedness in the Sobolev spaces H ˙ s ( T ) , with s > 7 / 2 , of an initial value problem for a nonlocal, cubically nonlinear, dispersive equation that provides an approximate description of the evolution of surface quasi-geostrophic fronts with small slopes.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical fluid mechanics 2018-12, Vol.20 (4), p.1967-1984
Hauptverfasser: Hunter, John K., Shu, Jingyang, Zhang, Qingtian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove local well-posedness in the Sobolev spaces H ˙ s ( T ) , with s > 7 / 2 , of an initial value problem for a nonlocal, cubically nonlinear, dispersive equation that provides an approximate description of the evolution of surface quasi-geostrophic fronts with small slopes.
ISSN:1422-6928
1422-6952
DOI:10.1007/s00021-018-0396-z