Seasonal differences in climatic controls of vegetation growth in the Beijing–Tianjin Sand Source Region of China

Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of this project. Precipit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of arid land 2018-12, Vol.10 (6), p.850-863
Hauptverfasser: Shan, Lishan, Yu, Xiang, Sun, Lingxiao, He, Bin, Wang, Haiyan, Xie, Tingting
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Launched in 2002, the Beiing–Tianjin Sand Source Control Project (BTSSCP) is an ecological restoration project intended to prevent desertification in China. Evidence from multiple sources has confirmed increases in vegetation growth in the BTSSCP region since the initiation of this project. Precipitation and essential climate variable-soil moisture (ECV-SM) conditions are typically considered to be the main drivers of vegetation growth in this region. Although many studies have investigated the inter-annual variations of vegetation growth, few concerns have been focused on the annual and seasonal variations of vegetation growth and their climatic drivers, which are crucial for understanding the relationships among the climate, vegetation, and human activities at the regional scale. Based on the normalized difference vegetation index (NDVI) derived from MODIS and the corresponding climatic data, we explored the responses of vegetation growth to climatic factors at annual and seasonal scales in the BTSSCP region during the period 2000–2014. Over the study region as a whole, NDVI generally increased from 2000 to 2014, at a rate of 0.002/a. Vegetation growth is stimulated mainly by the elevated temperature in spring, whereas precipitation is the leading driver of summer greening. In autumn, positive effects of both temperature and precipitation on vegetation growth were observed. The warming in spring promotes vegetation growth but reduces ECV-SM. Summer greening has a strong cooling effect on land surface temperature. These results indicate that the ecological and environmental consequences of ecological restoration projects should be comprehensively evaluated.
ISSN:1674-6767
2194-7783
DOI:10.1007/s40333-018-0075-1