On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space

For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of science and technology. Transaction A, Science Science, 2016-12, Vol.40 (4), p.209-217
Hauptverfasser: Ayatollah Zadeh Shirazi, Fatemah, Mahmoodi, Mohammad Ali, Raeisi, Morvarid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 4
container_start_page 209
container_title Iranian journal of science and technology. Transaction A, Science
container_volume 40
creator Ayatollah Zadeh Shirazi, Fatemah
Mahmoodi, Mohammad Ali
Raeisi, Morvarid
description For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalently for all p ∈ E ( A ( Y ) , S ) , p : A ( Y ) → A ( Y ) is pointwise periodic. Also, the transformation group ( A ( Y ) , S ) is distal (resp. equicontinuous, pointwise minimal) if and only if for all x ∈ A ( Y ) , x S is a finite subset of A ( Y ) . The text is motivated with tables, counterexamples and studying finally distality (and co-decomposability to distal transformation semigroups) in the abelian transformation semigroup ( A ( Y ) , S ) .
doi_str_mv 10.1007/s40995-016-0095-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2133380477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2133380477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-7098563ff8724debe000cf91a1964dd53d720724703fd9e8b71b264daa5f3d8f3</originalsourceid><addsrcrecordid>eNp1kF9rwyAUxWVssNL1A-xN2HO2qyaaPI7uLxRaaPcsJtHW0cRMLaPffnYp7GlP18s5v3PlIHRL4J4AiIeQQ1UVGRCeAaSHuEATyniekZJUl2hCgJYZp4Jfo1kItgZGCBc05xPULXv8ZENUexuP2Bms8MarPhjnOxWt6_Fad3br3WHA3zbu8LLXeOVsH_HcdYNqojW2GZ2_dAprvI4ar5OosQp4tVPhvN6gK6P2Qc_Oc4o-Xp4387dssXx9nz8usobyMmYCqrLgzJgyfbLVtQaAxlREkYrnbVuwVlBIkgBm2kqXtSA1TYpShWFtadgU3Y25g3dfBx2i_HQH36eTkhLGWAm5EMlFRlfjXQheGzl42yl_lATkqVg5FitTsfJUrDwxdGRC8vZb7f-S_4d-ANeUeus</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133380477</pqid></control><display><type>article</type><title>On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space</title><source>Alma/SFX Local Collection</source><creator>Ayatollah Zadeh Shirazi, Fatemah ; Mahmoodi, Mohammad Ali ; Raeisi, Morvarid</creator><creatorcontrib>Ayatollah Zadeh Shirazi, Fatemah ; Mahmoodi, Mohammad Ali ; Raeisi, Morvarid</creatorcontrib><description>For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalently for all p ∈ E ( A ( Y ) , S ) , p : A ( Y ) → A ( Y ) is pointwise periodic. Also, the transformation group ( A ( Y ) , S ) is distal (resp. equicontinuous, pointwise minimal) if and only if for all x ∈ A ( Y ) , x S is a finite subset of A ( Y ) . The text is motivated with tables, counterexamples and studying finally distality (and co-decomposability to distal transformation semigroups) in the abelian transformation semigroup ( A ( Y ) , S ) .</description><identifier>ISSN: 1028-6276</identifier><identifier>EISSN: 2364-1819</identifier><identifier>DOI: 10.1007/s40995-016-0095-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Chemistry/Food Science ; Earth Sciences ; Engineering ; Life Sciences ; Materials Science ; Physics ; Research Paper ; Topology</subject><ispartof>Iranian journal of science and technology. Transaction A, Science, 2016-12, Vol.40 (4), p.209-217</ispartof><rights>Shiraz University 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-7098563ff8724debe000cf91a1964dd53d720724703fd9e8b71b264daa5f3d8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ayatollah Zadeh Shirazi, Fatemah</creatorcontrib><creatorcontrib>Mahmoodi, Mohammad Ali</creatorcontrib><creatorcontrib>Raeisi, Morvarid</creatorcontrib><title>On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space</title><title>Iranian journal of science and technology. Transaction A, Science</title><addtitle>Iran J Sci Technol Trans Sci</addtitle><description>For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalently for all p ∈ E ( A ( Y ) , S ) , p : A ( Y ) → A ( Y ) is pointwise periodic. Also, the transformation group ( A ( Y ) , S ) is distal (resp. equicontinuous, pointwise minimal) if and only if for all x ∈ A ( Y ) , x S is a finite subset of A ( Y ) . The text is motivated with tables, counterexamples and studying finally distality (and co-decomposability to distal transformation semigroups) in the abelian transformation semigroup ( A ( Y ) , S ) .</description><subject>Chemistry/Food Science</subject><subject>Earth Sciences</subject><subject>Engineering</subject><subject>Life Sciences</subject><subject>Materials Science</subject><subject>Physics</subject><subject>Research Paper</subject><subject>Topology</subject><issn>1028-6276</issn><issn>2364-1819</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kF9rwyAUxWVssNL1A-xN2HO2qyaaPI7uLxRaaPcsJtHW0cRMLaPffnYp7GlP18s5v3PlIHRL4J4AiIeQQ1UVGRCeAaSHuEATyniekZJUl2hCgJYZp4Jfo1kItgZGCBc05xPULXv8ZENUexuP2Bms8MarPhjnOxWt6_Fad3br3WHA3zbu8LLXeOVsH_HcdYNqojW2GZ2_dAprvI4ar5OosQp4tVPhvN6gK6P2Qc_Oc4o-Xp4387dssXx9nz8usobyMmYCqrLgzJgyfbLVtQaAxlREkYrnbVuwVlBIkgBm2kqXtSA1TYpShWFtadgU3Y25g3dfBx2i_HQH36eTkhLGWAm5EMlFRlfjXQheGzl42yl_lATkqVg5FitTsfJUrDwxdGRC8vZb7f-S_4d-ANeUeus</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Ayatollah Zadeh Shirazi, Fatemah</creator><creator>Mahmoodi, Mohammad Ali</creator><creator>Raeisi, Morvarid</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7XB</scope><scope>883</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KB.</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0F</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space</title><author>Ayatollah Zadeh Shirazi, Fatemah ; Mahmoodi, Mohammad Ali ; Raeisi, Morvarid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-7098563ff8724debe000cf91a1964dd53d720724703fd9e8b71b264daa5f3d8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chemistry/Food Science</topic><topic>Earth Sciences</topic><topic>Engineering</topic><topic>Life Sciences</topic><topic>Materials Science</topic><topic>Physics</topic><topic>Research Paper</topic><topic>Topology</topic><toplevel>online_resources</toplevel><creatorcontrib>Ayatollah Zadeh Shirazi, Fatemah</creatorcontrib><creatorcontrib>Mahmoodi, Mohammad Ali</creatorcontrib><creatorcontrib>Raeisi, Morvarid</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Trade &amp; Industry (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Trade &amp; Industry</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Iranian journal of science and technology. Transaction A, Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ayatollah Zadeh Shirazi, Fatemah</au><au>Mahmoodi, Mohammad Ali</au><au>Raeisi, Morvarid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space</atitle><jtitle>Iranian journal of science and technology. Transaction A, Science</jtitle><stitle>Iran J Sci Technol Trans Sci</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>40</volume><issue>4</issue><spage>209</spage><epage>217</epage><pages>209-217</pages><issn>1028-6276</issn><eissn>2364-1819</eissn><abstract>For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalently for all p ∈ E ( A ( Y ) , S ) , p : A ( Y ) → A ( Y ) is pointwise periodic. Also, the transformation group ( A ( Y ) , S ) is distal (resp. equicontinuous, pointwise minimal) if and only if for all x ∈ A ( Y ) , x S is a finite subset of A ( Y ) . The text is motivated with tables, counterexamples and studying finally distality (and co-decomposability to distal transformation semigroups) in the abelian transformation semigroup ( A ( Y ) , S ) .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40995-016-0095-7</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1028-6276
ispartof Iranian journal of science and technology. Transaction A, Science, 2016-12, Vol.40 (4), p.209-217
issn 1028-6276
2364-1819
language eng
recordid cdi_proquest_journals_2133380477
source Alma/SFX Local Collection
subjects Chemistry/Food Science
Earth Sciences
Engineering
Life Sciences
Materials Science
Physics
Research Paper
Topology
title On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T13%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Distality%20of%20a%20Transformation%20Semigroup%20with%20One%20Point%20Compactification%20of%20a%20Discrete%20Space%20as%20Phase%20Space&rft.jtitle=Iranian%20journal%20of%20science%20and%20technology.%20Transaction%20A,%20Science&rft.au=Ayatollah%20Zadeh%20Shirazi,%20Fatemah&rft.date=2016-12-01&rft.volume=40&rft.issue=4&rft.spage=209&rft.epage=217&rft.pages=209-217&rft.issn=1028-6276&rft.eissn=2364-1819&rft_id=info:doi/10.1007/s40995-016-0095-7&rft_dat=%3Cproquest_cross%3E2133380477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133380477&rft_id=info:pmid/&rfr_iscdi=true