On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space

For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Iranian journal of science and technology. Transaction A, Science Science, 2016-12, Vol.40 (4), p.209-217
Hauptverfasser: Ayatollah Zadeh Shirazi, Fatemah, Mahmoodi, Mohammad Ali, Raeisi, Morvarid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalently for all p ∈ E ( A ( Y ) , S ) , p : A ( Y ) → A ( Y ) is pointwise periodic. Also, the transformation group ( A ( Y ) , S ) is distal (resp. equicontinuous, pointwise minimal) if and only if for all x ∈ A ( Y ) , x S is a finite subset of A ( Y ) . The text is motivated with tables, counterexamples and studying finally distality (and co-decomposability to distal transformation semigroups) in the abelian transformation semigroup ( A ( Y ) , S ) .
ISSN:1028-6276
2364-1819
DOI:10.1007/s40995-016-0095-7