On Distality of a Transformation Semigroup with One Point Compactification of a Discrete Space as Phase Space
For infinite discrete topological space Y , suppose A ( Y ) is one point compactification of Y , in the following text we prove that the transformation semigroup ( A ( Y ) , S ) is distal if and only if the enveloping semigroup E ( A ( Y ) , S ) is a group of homeomorphisms on A ( Y ) , or equivalen...
Gespeichert in:
Veröffentlicht in: | Iranian journal of science and technology. Transaction A, Science Science, 2016-12, Vol.40 (4), p.209-217 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For infinite discrete topological space
Y
,
suppose
A
(
Y
)
is one point compactification of
Y
,
in the following text we prove that the transformation semigroup
(
A
(
Y
)
,
S
)
is distal if and only if the enveloping semigroup
E
(
A
(
Y
)
,
S
)
is a group of homeomorphisms on
A
(
Y
)
,
or equivalently for all
p
∈
E
(
A
(
Y
)
,
S
)
,
p
:
A
(
Y
)
→
A
(
Y
)
is pointwise periodic. Also, the transformation group
(
A
(
Y
)
,
S
)
is distal (resp. equicontinuous, pointwise minimal) if and only if for all
x
∈
A
(
Y
)
,
x
S
is a finite subset of
A
(
Y
)
. The text is motivated with tables, counterexamples and studying finally distality (and co-decomposability to distal transformation semigroups) in the abelian transformation semigroup
(
A
(
Y
)
,
S
)
. |
---|---|
ISSN: | 1028-6276 2364-1819 |
DOI: | 10.1007/s40995-016-0095-7 |