Energy Dissipation of Reinforced Concrete Wall Combined with Buckling-Restrained Braces Subjected to Near- and Far-Fault Earthquakes
The energy approach is useful to understand the behavior of structural systems subjected to strong ground motions. In this research, the energy responses from the buckling-restrained braced frames as well as dual systems subjected to the NF and FF earthquakes are investigated and compared. The dual...
Gespeichert in:
Veröffentlicht in: | Iranian journal of science and technology. Transactions of civil engineering 2018-12, Vol.42 (4), p.345-359 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The energy approach is useful to understand the behavior of structural systems subjected to strong ground motions. In this research, the energy responses from the buckling-restrained braced frames as well as dual systems subjected to the NF and FF earthquakes are investigated and compared. The dual systems consist of reinforced concrete wall and buckling-restrained braces within steel frame adjacent to the wall. The considered structures are designed according to the current codes using the response spectrum analysis. Nonlinear numerical models were created in which the walls were made of fiber element model. The inelastic energy, input energy, kinetic energy, elastic strain energy and damping energy demand were investigated by implementing nonlinear time-history analysis. Also, the inelastic energy distribution pattern along the height was studied. The results show that for both near-field and far-field sets, the maximum inelastic energy dissipation demand belongs to the BRBFs compared to dual system. The wall existence caused the maximum inelastic energy demand to reduce and also leads to more balanced inelastic energy demand along the height of the structure. |
---|---|
ISSN: | 2228-6160 2364-1843 |
DOI: | 10.1007/s40996-018-0109-0 |