High-definition metrology-based machining error identification for non-continuous surfaces

This article presents a layered decomposition method to decompose the machined surface into sub-surfaces with different components in dissimilar scale to identify machining errors. The high-definition metrology-measured data of the surface is first fitted by triangular mesh interpolation method to s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture Part B: Journal of Engineering Manufacture, 2018-12, Vol.232 (14), p.2566-2576
Hauptverfasser: Zhang, Faping, Wu, Di, Yang, Jibin, Butt, Shahid I, Yan, Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2576
container_issue 14
container_start_page 2566
container_title Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture
container_volume 232
creator Zhang, Faping
Wu, Di
Yang, Jibin
Butt, Shahid I
Yan, Yan
description This article presents a layered decomposition method to decompose the machined surface into sub-surfaces with different components in dissimilar scale to identify machining errors. The high-definition metrology-measured data of the surface is first fitted by triangular mesh interpolation method to separate the surface into two sub-surface components, namely, system error caused and random error caused, respectively, whereas the stability of sub-surface entropy is used as the criteria to determine the refined mesh in case the decomposition exists throughout. Then, the sub-surface of system error is further decomposed by bi-dimensional empirical mode decomposition to get the error components varying in scales: surface roughness, waviness and profile, and as a result to identify the machining errors. Finally, self-correlation analysis is applied to each component to verify the decomposition. The result shows that each decomposed component has a distinctive wavelength, which proves that the method can successfully decompose the comprehensive surface topography into different scale components.
doi_str_mv 10.1177/0954405417703429
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2133325829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0954405417703429</sage_id><sourcerecordid>2133325829</sourcerecordid><originalsourceid>FETCH-LOGICAL-c309t-eac8afa5a318f46a51d7d042b8d1068682eeb46b911de19341d3ab240951dc6c3</originalsourceid><addsrcrecordid>eNp1UEtLAzEQDqJgrd49LniOZpLs6yjFFxS86MXLkk0m25Q2qcnuof_e1AqC4Fxm-F7DDCHXwG4B6vqOtaWUrJR5ZkLy9oTMOJNAeVuXp2R2oOmBPycXKa1ZrlqIGfl4dsOKGrTOu9EFX2xxjGEThj3tVUJTbJVeZc4PBcYYYuEM-tFZp9W33GbIB091yKifwpSKNEWrNKZLcmbVJuHVT5-T98eHt8UzXb4-vSzul1QL1o4UlW6UVaUS0FhZqRJMbZjkfWOAVU3VcMReVn0LYBBaIcEI1XOZLwKjKy3m5OaYu4vhc8I0duswRZ9XdhyEELxseJtV7KjSMaQU0Xa76LYq7jtg3eGD3d8PZgs9WpIa8Df0X_0XICRxYw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2133325829</pqid></control><display><type>article</type><title>High-definition metrology-based machining error identification for non-continuous surfaces</title><source>Access via SAGE</source><creator>Zhang, Faping ; Wu, Di ; Yang, Jibin ; Butt, Shahid I ; Yan, Yan</creator><creatorcontrib>Zhang, Faping ; Wu, Di ; Yang, Jibin ; Butt, Shahid I ; Yan, Yan</creatorcontrib><description>This article presents a layered decomposition method to decompose the machined surface into sub-surfaces with different components in dissimilar scale to identify machining errors. The high-definition metrology-measured data of the surface is first fitted by triangular mesh interpolation method to separate the surface into two sub-surface components, namely, system error caused and random error caused, respectively, whereas the stability of sub-surface entropy is used as the criteria to determine the refined mesh in case the decomposition exists throughout. Then, the sub-surface of system error is further decomposed by bi-dimensional empirical mode decomposition to get the error components varying in scales: surface roughness, waviness and profile, and as a result to identify the machining errors. Finally, self-correlation analysis is applied to each component to verify the decomposition. The result shows that each decomposed component has a distinctive wavelength, which proves that the method can successfully decompose the comprehensive surface topography into different scale components.</description><identifier>ISSN: 0954-4054</identifier><identifier>EISSN: 2041-2975</identifier><identifier>DOI: 10.1177/0954405417703429</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Correlation analysis ; Decomposition ; Empirical analysis ; Interpolation ; Machining ; Metrology ; Random errors ; Surface roughness ; Surface stability ; Waviness</subject><ispartof>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018-12, Vol.232 (14), p.2566-2576</ispartof><rights>IMechE 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c309t-eac8afa5a318f46a51d7d042b8d1068682eeb46b911de19341d3ab240951dc6c3</citedby><cites>FETCH-LOGICAL-c309t-eac8afa5a318f46a51d7d042b8d1068682eeb46b911de19341d3ab240951dc6c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0954405417703429$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0954405417703429$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>313,314,780,784,792,21819,27922,27924,27925,43621,43622</link.rule.ids></links><search><creatorcontrib>Zhang, Faping</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Yang, Jibin</creatorcontrib><creatorcontrib>Butt, Shahid I</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><title>High-definition metrology-based machining error identification for non-continuous surfaces</title><title>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</title><description>This article presents a layered decomposition method to decompose the machined surface into sub-surfaces with different components in dissimilar scale to identify machining errors. The high-definition metrology-measured data of the surface is first fitted by triangular mesh interpolation method to separate the surface into two sub-surface components, namely, system error caused and random error caused, respectively, whereas the stability of sub-surface entropy is used as the criteria to determine the refined mesh in case the decomposition exists throughout. Then, the sub-surface of system error is further decomposed by bi-dimensional empirical mode decomposition to get the error components varying in scales: surface roughness, waviness and profile, and as a result to identify the machining errors. Finally, self-correlation analysis is applied to each component to verify the decomposition. The result shows that each decomposed component has a distinctive wavelength, which proves that the method can successfully decompose the comprehensive surface topography into different scale components.</description><subject>Correlation analysis</subject><subject>Decomposition</subject><subject>Empirical analysis</subject><subject>Interpolation</subject><subject>Machining</subject><subject>Metrology</subject><subject>Random errors</subject><subject>Surface roughness</subject><subject>Surface stability</subject><subject>Waviness</subject><issn>0954-4054</issn><issn>2041-2975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1UEtLAzEQDqJgrd49LniOZpLs6yjFFxS86MXLkk0m25Q2qcnuof_e1AqC4Fxm-F7DDCHXwG4B6vqOtaWUrJR5ZkLy9oTMOJNAeVuXp2R2oOmBPycXKa1ZrlqIGfl4dsOKGrTOu9EFX2xxjGEThj3tVUJTbJVeZc4PBcYYYuEM-tFZp9W33GbIB091yKifwpSKNEWrNKZLcmbVJuHVT5-T98eHt8UzXb4-vSzul1QL1o4UlW6UVaUS0FhZqRJMbZjkfWOAVU3VcMReVn0LYBBaIcEI1XOZLwKjKy3m5OaYu4vhc8I0duswRZ9XdhyEELxseJtV7KjSMaQU0Xa76LYq7jtg3eGD3d8PZgs9WpIa8Df0X_0XICRxYw</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Zhang, Faping</creator><creator>Wu, Di</creator><creator>Yang, Jibin</creator><creator>Butt, Shahid I</creator><creator>Yan, Yan</creator><general>SAGE Publications</general><general>SAGE PUBLICATIONS, INC</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201812</creationdate><title>High-definition metrology-based machining error identification for non-continuous surfaces</title><author>Zhang, Faping ; Wu, Di ; Yang, Jibin ; Butt, Shahid I ; Yan, Yan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c309t-eac8afa5a318f46a51d7d042b8d1068682eeb46b911de19341d3ab240951dc6c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Correlation analysis</topic><topic>Decomposition</topic><topic>Empirical analysis</topic><topic>Interpolation</topic><topic>Machining</topic><topic>Metrology</topic><topic>Random errors</topic><topic>Surface roughness</topic><topic>Surface stability</topic><topic>Waviness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Faping</creatorcontrib><creatorcontrib>Wu, Di</creatorcontrib><creatorcontrib>Yang, Jibin</creatorcontrib><creatorcontrib>Butt, Shahid I</creatorcontrib><creatorcontrib>Yan, Yan</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Faping</au><au>Wu, Di</au><au>Yang, Jibin</au><au>Butt, Shahid I</au><au>Yan, Yan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-definition metrology-based machining error identification for non-continuous surfaces</atitle><jtitle>Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture</jtitle><date>2018-12</date><risdate>2018</risdate><volume>232</volume><issue>14</issue><spage>2566</spage><epage>2576</epage><pages>2566-2576</pages><issn>0954-4054</issn><eissn>2041-2975</eissn><abstract>This article presents a layered decomposition method to decompose the machined surface into sub-surfaces with different components in dissimilar scale to identify machining errors. The high-definition metrology-measured data of the surface is first fitted by triangular mesh interpolation method to separate the surface into two sub-surface components, namely, system error caused and random error caused, respectively, whereas the stability of sub-surface entropy is used as the criteria to determine the refined mesh in case the decomposition exists throughout. Then, the sub-surface of system error is further decomposed by bi-dimensional empirical mode decomposition to get the error components varying in scales: surface roughness, waviness and profile, and as a result to identify the machining errors. Finally, self-correlation analysis is applied to each component to verify the decomposition. The result shows that each decomposed component has a distinctive wavelength, which proves that the method can successfully decompose the comprehensive surface topography into different scale components.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0954405417703429</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0954-4054
ispartof Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2018-12, Vol.232 (14), p.2566-2576
issn 0954-4054
2041-2975
language eng
recordid cdi_proquest_journals_2133325829
source Access via SAGE
subjects Correlation analysis
Decomposition
Empirical analysis
Interpolation
Machining
Metrology
Random errors
Surface roughness
Surface stability
Waviness
title High-definition metrology-based machining error identification for non-continuous surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A06%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-definition%20metrology-based%20machining%20error%20identification%20for%20non-continuous%20surfaces&rft.jtitle=Proceedings%20of%20the%20Institution%20of%20Mechanical%20Engineers,%20Part%20B:%20Journal%20of%20Engineering%20Manufacture&rft.au=Zhang,%20Faping&rft.date=2018-12&rft.volume=232&rft.issue=14&rft.spage=2566&rft.epage=2576&rft.pages=2566-2576&rft.issn=0954-4054&rft.eissn=2041-2975&rft_id=info:doi/10.1177/0954405417703429&rft_dat=%3Cproquest_cross%3E2133325829%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2133325829&rft_id=info:pmid/&rft_sage_id=10.1177_0954405417703429&rfr_iscdi=true