High-definition metrology-based machining error identification for non-continuous surfaces
This article presents a layered decomposition method to decompose the machined surface into sub-surfaces with different components in dissimilar scale to identify machining errors. The high-definition metrology-measured data of the surface is first fitted by triangular mesh interpolation method to s...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture Part B: Journal of Engineering Manufacture, 2018-12, Vol.232 (14), p.2566-2576 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This article presents a layered decomposition method to decompose the machined surface into sub-surfaces with different components in dissimilar scale to identify machining errors. The high-definition metrology-measured data of the surface is first fitted by triangular mesh interpolation method to separate the surface into two sub-surface components, namely, system error caused and random error caused, respectively, whereas the stability of sub-surface entropy is used as the criteria to determine the refined mesh in case the decomposition exists throughout. Then, the sub-surface of system error is further decomposed by bi-dimensional empirical mode decomposition to get the error components varying in scales: surface roughness, waviness and profile, and as a result to identify the machining errors. Finally, self-correlation analysis is applied to each component to verify the decomposition. The result shows that each decomposed component has a distinctive wavelength, which proves that the method can successfully decompose the comprehensive surface topography into different scale components. |
---|---|
ISSN: | 0954-4054 2041-2975 |
DOI: | 10.1177/0954405417703429 |