Atomic/molecular layer deposition of Cu-organic thin films

The gas-phase atomic/molecular layer deposition (ALD/MLD) technique is strongly emerging as a viable approach to fabricate new exciting inorganic-organic hybrid thin-film materials. However, much less effort has been made to develop new precursors specifically intended for ALD/MLD; this applies to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2018-11, Vol.47 (44), p.15791-158
Hauptverfasser: Hagen, D. J, Mai, L, Devi, A, Sainio, J, Karppinen, M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The gas-phase atomic/molecular layer deposition (ALD/MLD) technique is strongly emerging as a viable approach to fabricate new exciting inorganic-organic hybrid thin-film materials. However, much less effort has been made to develop new precursors specifically intended for ALD/MLD; this applies to both the organic and inorganic precursors, and in the latter case in particular to transition metal precursors. Here we introduce copper bisdimethylaminopropoxide (Cu(dmap) 2 ) as a promising transition metal precursor for ALD/MLD to be combined with a variety of organic precursors with different backbones and functional groups, i.e. hydroquinone (HQ), terephthalic acid (TPA), 4,4′-oxydianiline (ODA), p -phenylenediamine (PPDA) and 1,4-benzenedithiol (BDT). Hybrid Cu-organic thin films were obtained from all five organic precursors with appreciably high growth rates ranging from 1.0 to 2.6 Å per cycle. However, the Cu(dmap) 2 + HQ process was found to yield hybrid Cu-organic films only at temperatures below 120 °C, while at higher temperatures metallic Cu films were obtained. The films were characterized by XRR, GIXRD, FTIR, Raman, XPS and UV-Vis spectroscopy. The gas-phase atomic/molecular layer deposition (ALD/MLD) technique is strongly emerging as a viable approach for fabricating new exciting inorganic-organic hybrid thin-film materials. Here we report new ALD/MLD processes for copper-based hybrid materials based on five different organic precursors.
ISSN:1477-9226
1477-9234
DOI:10.1039/c8dt03735c