Study of biopolymer I-carrageenan with magnesium perchlorate

The green revolution has led to the study of biopolymer for development of polymer electrolyte for electrochemical devices. Cellulose acetate, pectin, chitosan, and carrageenan are some of the biopolymers. Biopolymer-based membrane for proton conduction and lithium ion conduction have developed and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ionics 2018-12, Vol.24 (12), p.3861-3875
Hauptverfasser: Shanmuga Priya, S., Karthika, M., Selvasekarapandian, S., Manjuladevi, R., Monisha, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The green revolution has led to the study of biopolymer for development of polymer electrolyte for electrochemical devices. Cellulose acetate, pectin, chitosan, and carrageenan are some of the biopolymers. Biopolymer-based membrane for proton conduction and lithium ion conduction have developed and characterized by different techniques. But the study of biopolymer based on Mg 2+ ion is rare in literature. So, biopolymer based on I-carrageenan with magnesium has been studied. I-carrageenan biopolymer membrane with different concentration of magnesium perchlorate has been prepared by solution casting technique. Developed biopolymer membrane have been characterized by X-ray diffraction analysis (XRD), FTIR, differential scanning calorimetry (DSC), and AC impedance techniques. Pure I-carrageenan has shown a conductivity value of 5.90 × 10 −5  S/cm. I-carrageenan membrane with 0.6 wt% of magnesium perchlorate has shown a conductivity of 2.18 × 10 −3  S/cm. A primary Mg 2+ ion battery has been constructed and its performance is studied. XRD has been undertaken to study the amorphous/crystalline nature of the sample. I-carrageenan with 0.6 wt% of magnesium membrane has shown highest amorphous nature. FTIR study confirms the complex formation between polymer and salt. AC impedance technique has been used to study the conductivity of the samples.
ISSN:0947-7047
1862-0760
DOI:10.1007/s11581-018-2535-1