A Survey of Random Forest Based Methods for Intrusion Detection Systems
Over the past decades, researchers have been proposing different Intrusion Detection approaches to deal with the increasing number and complexity of threats for computer systems. In this context, Random Forest models have been providing a notable performance on their applications in the realm of the...
Gespeichert in:
Veröffentlicht in: | ACM computing surveys 2019-05, Vol.51 (3), p.1-36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over the past decades, researchers have been proposing different Intrusion Detection approaches to deal with the increasing number and complexity of threats for computer systems. In this context, Random Forest models have been providing a notable performance on their applications in the realm of the behaviour-based Intrusion Detection Systems. Specificities of the Random Forest model are used to provide classification, feature selection, and proximity metrics. This work provides a comprehensive review of the general basic concepts related to Intrusion Detection Systems, including taxonomies, attacks, data collection, modelling, evaluation metrics, and commonly used methods. It also provides a survey of Random Forest based methods applied in this context, considering the particularities involved in these models. Finally, some open questions and challenges are posed combined with possible directions to deal with them, which may guide future works on the area. |
---|---|
ISSN: | 0360-0300 1557-7341 |
DOI: | 10.1145/3178582 |