Fully discrete DPG methods for the Kirchhoff–Love plate bending model

We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2019-01, Vol.343, p.550-571
Hauptverfasser: Führer, Thomas, Heuer, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 571
container_issue
container_start_page 550
container_title Computer methods in applied mechanics and engineering
container_volume 343
creator Führer, Thomas
Heuer, Norbert
description We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.
doi_str_mv 10.1016/j.cma.2018.08.041
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132259365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782518304390</els_id><sourcerecordid>2132259365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSpk3xJKu7igt60HNo06lNaZs16Qp78z_4D_0lZlnPDg9mBt6bj0fIJdAEKGTXXaKHMmEUZEIDUjgiM5B5ETPg8pjMKE1FnEsmTsmZ9x0NIYHNyGq57ftdVBuvHU4Y3b2sogGn1tY-aqyLphajJ-N029qm-fn6XttPjDZ9GagVjrUZ36PB1tifk5Om7D1e_OU5eVvevy4e4vXz6nFxu441Z2KKRSabnOWioAXkDU9zFLzkKVRSV1RWVQaomcwp1ZAXoqScAwu15FILkKGfk6vD3I2zH1v0k-rs1o1hpQqfMiYKnonAggNLO-u9w0ZtnBlKt1NA1d4v1angl9r7pWhACkFzc9BgOP_ToFNeGxw11sahnlRtzT_qX20VcRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132259365</pqid></control><display><type>article</type><title>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Führer, Thomas ; Heuer, Norbert</creator><creatorcontrib>Führer, Thomas ; Heuer, Norbert</creatorcontrib><description>We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2018.08.041</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bending ; Biharmonic problem ; Convergence ; Discontinuous Petrov–Galerkin method ; Discretization ; Formulations ; Fortin operator ; Fourth-order elliptic PDE ; Kirchhoff–Love model ; Mathematical analysis ; Mathematical models ; Plate bending ; Polygons ; Symmetry ; Well posed problems</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-01, Vol.343, p.550-571</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</citedby><cites>FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</cites><orcidid>0000-0002-5171-1457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2018.08.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Heuer, Norbert</creatorcontrib><title>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</title><title>Computer methods in applied mechanics and engineering</title><description>We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.</description><subject>Bending</subject><subject>Biharmonic problem</subject><subject>Convergence</subject><subject>Discontinuous Petrov–Galerkin method</subject><subject>Discretization</subject><subject>Formulations</subject><subject>Fortin operator</subject><subject>Fourth-order elliptic PDE</subject><subject>Kirchhoff–Love model</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Plate bending</subject><subject>Polygons</subject><subject>Symmetry</subject><subject>Well posed problems</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSpk3xJKu7igt60HNo06lNaZs16Qp78z_4D_0lZlnPDg9mBt6bj0fIJdAEKGTXXaKHMmEUZEIDUjgiM5B5ETPg8pjMKE1FnEsmTsmZ9x0NIYHNyGq57ftdVBuvHU4Y3b2sogGn1tY-aqyLphajJ-N029qm-fn6XttPjDZ9GagVjrUZ36PB1tifk5Om7D1e_OU5eVvevy4e4vXz6nFxu441Z2KKRSabnOWioAXkDU9zFLzkKVRSV1RWVQaomcwp1ZAXoqScAwu15FILkKGfk6vD3I2zH1v0k-rs1o1hpQqfMiYKnonAggNLO-u9w0ZtnBlKt1NA1d4v1angl9r7pWhACkFzc9BgOP_ToFNeGxw11sahnlRtzT_qX20VcRo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Führer, Thomas</creator><creator>Heuer, Norbert</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5171-1457</orcidid></search><sort><creationdate>20190101</creationdate><title>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</title><author>Führer, Thomas ; Heuer, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bending</topic><topic>Biharmonic problem</topic><topic>Convergence</topic><topic>Discontinuous Petrov–Galerkin method</topic><topic>Discretization</topic><topic>Formulations</topic><topic>Fortin operator</topic><topic>Fourth-order elliptic PDE</topic><topic>Kirchhoff–Love model</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Plate bending</topic><topic>Polygons</topic><topic>Symmetry</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Heuer, Norbert</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Führer, Thomas</au><au>Heuer, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>343</volume><spage>550</spage><epage>571</epage><pages>550-571</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2018.08.041</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5171-1457</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2019-01, Vol.343, p.550-571
issn 0045-7825
1879-2138
language eng
recordid cdi_proquest_journals_2132259365
source Access via ScienceDirect (Elsevier)
subjects Bending
Biharmonic problem
Convergence
Discontinuous Petrov–Galerkin method
Discretization
Formulations
Fortin operator
Fourth-order elliptic PDE
Kirchhoff–Love model
Mathematical analysis
Mathematical models
Plate bending
Polygons
Symmetry
Well posed problems
title Fully discrete DPG methods for the Kirchhoff–Love plate bending model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20discrete%20DPG%20methods%20for%20the%20Kirchhoff%E2%80%93Love%20plate%20bending%20model&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=F%C3%BChrer,%20Thomas&rft.date=2019-01-01&rft.volume=343&rft.spage=550&rft.epage=571&rft.pages=550-571&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2018.08.041&rft_dat=%3Cproquest_cross%3E2132259365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132259365&rft_id=info:pmid/&rft_els_id=S0045782518304390&rfr_iscdi=true