Fully discrete DPG methods for the Kirchhoff–Love plate bending model
We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that...
Gespeichert in:
Veröffentlicht in: | Computer methods in applied mechanics and engineering 2019-01, Vol.343, p.550-571 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 571 |
---|---|
container_issue | |
container_start_page | 550 |
container_title | Computer methods in applied mechanics and engineering |
container_volume | 343 |
creator | Führer, Thomas Heuer, Norbert |
description | We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders. |
doi_str_mv | 10.1016/j.cma.2018.08.041 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132259365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782518304390</els_id><sourcerecordid>2132259365</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</originalsourceid><addsrcrecordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSpk3xJKu7igt60HNo06lNaZs16Qp78z_4D_0lZlnPDg9mBt6bj0fIJdAEKGTXXaKHMmEUZEIDUjgiM5B5ETPg8pjMKE1FnEsmTsmZ9x0NIYHNyGq57ftdVBuvHU4Y3b2sogGn1tY-aqyLphajJ-N029qm-fn6XttPjDZ9GagVjrUZ36PB1tifk5Om7D1e_OU5eVvevy4e4vXz6nFxu441Z2KKRSabnOWioAXkDU9zFLzkKVRSV1RWVQaomcwp1ZAXoqScAwu15FILkKGfk6vD3I2zH1v0k-rs1o1hpQqfMiYKnonAggNLO-u9w0ZtnBlKt1NA1d4v1angl9r7pWhACkFzc9BgOP_ToFNeGxw11sahnlRtzT_qX20VcRo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132259365</pqid></control><display><type>article</type><title>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</title><source>Access via ScienceDirect (Elsevier)</source><creator>Führer, Thomas ; Heuer, Norbert</creator><creatorcontrib>Führer, Thomas ; Heuer, Norbert</creatorcontrib><description>We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2018.08.041</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Bending ; Biharmonic problem ; Convergence ; Discontinuous Petrov–Galerkin method ; Discretization ; Formulations ; Fortin operator ; Fourth-order elliptic PDE ; Kirchhoff–Love model ; Mathematical analysis ; Mathematical models ; Plate bending ; Polygons ; Symmetry ; Well posed problems</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-01, Vol.343, p.550-571</ispartof><rights>2018 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jan 1, 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</citedby><cites>FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</cites><orcidid>0000-0002-5171-1457</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cma.2018.08.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Heuer, Norbert</creatorcontrib><title>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</title><title>Computer methods in applied mechanics and engineering</title><description>We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.</description><subject>Bending</subject><subject>Biharmonic problem</subject><subject>Convergence</subject><subject>Discontinuous Petrov–Galerkin method</subject><subject>Discretization</subject><subject>Formulations</subject><subject>Fortin operator</subject><subject>Fourth-order elliptic PDE</subject><subject>Kirchhoff–Love model</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Plate bending</subject><subject>Polygons</subject><subject>Symmetry</subject><subject>Well posed problems</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LxDAQDaLguvoDvBU8t2aSpk3xJKu7igt60HNo06lNaZs16Qp78z_4D_0lZlnPDg9mBt6bj0fIJdAEKGTXXaKHMmEUZEIDUjgiM5B5ETPg8pjMKE1FnEsmTsmZ9x0NIYHNyGq57ftdVBuvHU4Y3b2sogGn1tY-aqyLphajJ-N029qm-fn6XttPjDZ9GagVjrUZ36PB1tifk5Om7D1e_OU5eVvevy4e4vXz6nFxu441Z2KKRSabnOWioAXkDU9zFLzkKVRSV1RWVQaomcwp1ZAXoqScAwu15FILkKGfk6vD3I2zH1v0k-rs1o1hpQqfMiYKnonAggNLO-u9w0ZtnBlKt1NA1d4v1angl9r7pWhACkFzc9BgOP_ToFNeGxw11sahnlRtzT_qX20VcRo</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Führer, Thomas</creator><creator>Heuer, Norbert</creator><general>Elsevier B.V</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5171-1457</orcidid></search><sort><creationdate>20190101</creationdate><title>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</title><author>Führer, Thomas ; Heuer, Norbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-568f727590917f347e53a341b8cb08bb61ec28700c1795a033120c1838c518a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bending</topic><topic>Biharmonic problem</topic><topic>Convergence</topic><topic>Discontinuous Petrov–Galerkin method</topic><topic>Discretization</topic><topic>Formulations</topic><topic>Fortin operator</topic><topic>Fourth-order elliptic PDE</topic><topic>Kirchhoff–Love model</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Plate bending</topic><topic>Polygons</topic><topic>Symmetry</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Führer, Thomas</creatorcontrib><creatorcontrib>Heuer, Norbert</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Führer, Thomas</au><au>Heuer, Norbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fully discrete DPG methods for the Kirchhoff–Love plate bending model</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-01-01</date><risdate>2019</risdate><volume>343</volume><spage>550</spage><epage>571</epage><pages>550-571</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2018.08.041</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-5171-1457</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7825 |
ispartof | Computer methods in applied mechanics and engineering, 2019-01, Vol.343, p.550-571 |
issn | 0045-7825 1879-2138 |
language | eng |
recordid | cdi_proquest_journals_2132259365 |
source | Access via ScienceDirect (Elsevier) |
subjects | Bending Biharmonic problem Convergence Discontinuous Petrov–Galerkin method Discretization Formulations Fortin operator Fourth-order elliptic PDE Kirchhoff–Love model Mathematical analysis Mathematical models Plate bending Polygons Symmetry Well posed problems |
title | Fully discrete DPG methods for the Kirchhoff–Love plate bending model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T16%3A49%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fully%20discrete%20DPG%20methods%20for%20the%20Kirchhoff%E2%80%93Love%20plate%20bending%20model&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=F%C3%BChrer,%20Thomas&rft.date=2019-01-01&rft.volume=343&rft.spage=550&rft.epage=571&rft.pages=550-571&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2018.08.041&rft_dat=%3Cproquest_cross%3E2132259365%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132259365&rft_id=info:pmid/&rft_els_id=S0045782518304390&rfr_iscdi=true |