Fully discrete DPG methods for the Kirchhoff–Love plate bending model

We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2019-01, Vol.343, p.550-571
Hauptverfasser: Führer, Thomas, Heuer, Norbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the analysis and discretization of the Kirchhoff–Love plate bending problem from Führer et al. (in press) in two aspects. First, we present a well-posed formulation and quasi-optimal DPG discretization that include the gradient of the deflection. Second, we construct Fortin operators that prove the well-posedness and quasi-optimal convergence of lowest-order discrete schemes with approximated test functions for both formulations. Our results apply to the case of non-convex polygonal plates where shear forces can be less than L2-regular. Numerical results illustrate expected convergence orders.
ISSN:0045-7825
1879-2138
DOI:10.1016/j.cma.2018.08.041