Development of electrically conductive structural BMI based CFRPs for lightning strike protection

In the present paper, bismaleimide resin (BMI) based carbon fiber reinforced composite (CFRP) with remarkable lightning strike protection (LSP) capability was developed. A light weight conductive veil was prepared and interleaved to CFRP with the through thickness conductivity of 27.9 S/m, while its...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites science and technology 2018-10, Vol.167, p.555-562
Hauptverfasser: Zhao, Z.J., Xian, G.J., Yu, J.G., Wang, J., Tong, J.F., Wei, J.H., Wang, C.C., Moreira, P., Yi, X.S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, bismaleimide resin (BMI) based carbon fiber reinforced composite (CFRP) with remarkable lightning strike protection (LSP) capability was developed. A light weight conductive veil was prepared and interleaved to CFRP with the through thickness conductivity of 27.9 S/m, while its static mechanical strength was unaffected. We prove that the through thickness conductive pathways made CFRP to disperse the lightning current more effectively; reducing the lightning damage toward the inner part of the CFRP. The deepening Joule heat was proved to be the major reason of the penetrating structure failure. Comparing to the state-of-art metal sacrifice layer for LSP, the through thickness conductive CFRP has lighter weight and similar LSP capability, without compromising the mechanical strength.
ISSN:0266-3538
1879-1050
DOI:10.1016/j.compscitech.2018.08.026