Survival analysis of fatigue data: Application of generalized linear models and hierarchical Bayesian model

•The survival analysis is introduced to describe the fatigue failure process.•Generalized linear model has been established for the P-S-N curves estimation.•A hierarchical Bayesian model is employed to estimate the parameters in the model.•The fatigue design curves are described by a shape-fixed Wei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of fatigue 2018-12, Vol.117, p.39-46
Hauptverfasser: Liu, Xiao-Wei, Lu, Da-Gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 46
container_issue
container_start_page 39
container_title International journal of fatigue
container_volume 117
creator Liu, Xiao-Wei
Lu, Da-Gang
description •The survival analysis is introduced to describe the fatigue failure process.•Generalized linear model has been established for the P-S-N curves estimation.•A hierarchical Bayesian model is employed to estimate the parameters in the model.•The fatigue design curves are described by a shape-fixed Weibull survivor function. The survival analysis is introduced to describe the fatigue failure process in this paper for obtaining a set of flexible and accurate probabilistic stress-life (P-S-N) curves in fatigue reliability analysis. The generalized linear models (GLMs) are applied as well for expressing a trend and random errors of the P-S-N curves simultaneously. A GLM, including a linear Basquin relation and a shape-fixed Weibull hazard function, has been established for the P-S-N curves estimation, then a hierarchical Bayesian model is employed to estimate their parameters. The fatigue probability design curves are generated by the survivor function or the resulting predictive distributions. Finally, a comparative example is presented to verify the effectiveness of the method.
doi_str_mv 10.1016/j.ijfatigue.2018.07.027
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2132228750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S014211231830313X</els_id><sourcerecordid>2132228750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-3d2335561385f6e94b2524124989b6f4ecddc92ccb90f1272f961cf3f0fd80c13</originalsourceid><addsrcrecordid>eNqFkFtLwzAYhoMoOKe_wYDXrTm0TePdFE8w8EK9DlkOW2rW1qQdzF9vRoe3Xn3wvQd4HwCuMcoxwtVtk7vGysGtR5MThOscsRwRdgJmuGY8o0VJTsEM4YJkGBN6Di5ibBBCHLFyBr7ex7BzO-mhbKXfRxdhZ-GxD2o5yDu46HvvVHp17UFcm9YE6d2P0dC71sgAt502PqYKDTcuiUFtUsDDe7k30cl2MlyCMyt9NFfHOwefT48fDy_Z8u359WGxzBQt6JBRTSgtywrTurSV4cWKlKTApOA1X1W2MEprxYlSK44sJoxYXmFlqUVW10hhOgc3U28fuu_RxEE03RjSvCgIpoSQmpUoudjkUqGLMRgr-uC2MuwFRuJAVjTij6w4kBWIiUQ2JRdTMm02u7RXROVMq4x2wahB6M792_ELvb6HMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2132228750</pqid></control><display><type>article</type><title>Survival analysis of fatigue data: Application of generalized linear models and hierarchical Bayesian model</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Liu, Xiao-Wei ; Lu, Da-Gang</creator><creatorcontrib>Liu, Xiao-Wei ; Lu, Da-Gang</creatorcontrib><description>•The survival analysis is introduced to describe the fatigue failure process.•Generalized linear model has been established for the P-S-N curves estimation.•A hierarchical Bayesian model is employed to estimate the parameters in the model.•The fatigue design curves are described by a shape-fixed Weibull survivor function. The survival analysis is introduced to describe the fatigue failure process in this paper for obtaining a set of flexible and accurate probabilistic stress-life (P-S-N) curves in fatigue reliability analysis. The generalized linear models (GLMs) are applied as well for expressing a trend and random errors of the P-S-N curves simultaneously. A GLM, including a linear Basquin relation and a shape-fixed Weibull hazard function, has been established for the P-S-N curves estimation, then a hierarchical Bayesian model is employed to estimate their parameters. The fatigue probability design curves are generated by the survivor function or the resulting predictive distributions. Finally, a comparative example is presented to verify the effectiveness of the method.</description><identifier>ISSN: 0142-1123</identifier><identifier>EISSN: 1879-3452</identifier><identifier>DOI: 10.1016/j.ijfatigue.2018.07.027</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Bayesian analysis ; Crack propagation ; Failure analysis ; Fatigue ; Fatigue failure ; Fatigue life ; Generalized linear models ; Hierarchical Bayesian model ; Materials fatigue ; P-S-N curves ; Parameter estimation ; Random errors ; Reliability analysis ; S N diagrams ; Statistical analysis ; Statistical models ; Survival ; Survival analysis</subject><ispartof>International journal of fatigue, 2018-12, Vol.117, p.39-46</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Dec 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-3d2335561385f6e94b2524124989b6f4ecddc92ccb90f1272f961cf3f0fd80c13</citedby><cites>FETCH-LOGICAL-c343t-3d2335561385f6e94b2524124989b6f4ecddc92ccb90f1272f961cf3f0fd80c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijfatigue.2018.07.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Liu, Xiao-Wei</creatorcontrib><creatorcontrib>Lu, Da-Gang</creatorcontrib><title>Survival analysis of fatigue data: Application of generalized linear models and hierarchical Bayesian model</title><title>International journal of fatigue</title><description>•The survival analysis is introduced to describe the fatigue failure process.•Generalized linear model has been established for the P-S-N curves estimation.•A hierarchical Bayesian model is employed to estimate the parameters in the model.•The fatigue design curves are described by a shape-fixed Weibull survivor function. The survival analysis is introduced to describe the fatigue failure process in this paper for obtaining a set of flexible and accurate probabilistic stress-life (P-S-N) curves in fatigue reliability analysis. The generalized linear models (GLMs) are applied as well for expressing a trend and random errors of the P-S-N curves simultaneously. A GLM, including a linear Basquin relation and a shape-fixed Weibull hazard function, has been established for the P-S-N curves estimation, then a hierarchical Bayesian model is employed to estimate their parameters. The fatigue probability design curves are generated by the survivor function or the resulting predictive distributions. Finally, a comparative example is presented to verify the effectiveness of the method.</description><subject>Bayesian analysis</subject><subject>Crack propagation</subject><subject>Failure analysis</subject><subject>Fatigue</subject><subject>Fatigue failure</subject><subject>Fatigue life</subject><subject>Generalized linear models</subject><subject>Hierarchical Bayesian model</subject><subject>Materials fatigue</subject><subject>P-S-N curves</subject><subject>Parameter estimation</subject><subject>Random errors</subject><subject>Reliability analysis</subject><subject>S N diagrams</subject><subject>Statistical analysis</subject><subject>Statistical models</subject><subject>Survival</subject><subject>Survival analysis</subject><issn>0142-1123</issn><issn>1879-3452</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLwzAYhoMoOKe_wYDXrTm0TePdFE8w8EK9DlkOW2rW1qQdzF9vRoe3Xn3wvQd4HwCuMcoxwtVtk7vGysGtR5MThOscsRwRdgJmuGY8o0VJTsEM4YJkGBN6Di5ibBBCHLFyBr7ex7BzO-mhbKXfRxdhZ-GxD2o5yDu46HvvVHp17UFcm9YE6d2P0dC71sgAt502PqYKDTcuiUFtUsDDe7k30cl2MlyCMyt9NFfHOwefT48fDy_Z8u359WGxzBQt6JBRTSgtywrTurSV4cWKlKTApOA1X1W2MEprxYlSK44sJoxYXmFlqUVW10hhOgc3U28fuu_RxEE03RjSvCgIpoSQmpUoudjkUqGLMRgr-uC2MuwFRuJAVjTij6w4kBWIiUQ2JRdTMm02u7RXROVMq4x2wahB6M792_ELvb6HMw</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Liu, Xiao-Wei</creator><creator>Lu, Da-Gang</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201812</creationdate><title>Survival analysis of fatigue data: Application of generalized linear models and hierarchical Bayesian model</title><author>Liu, Xiao-Wei ; Lu, Da-Gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-3d2335561385f6e94b2524124989b6f4ecddc92ccb90f1272f961cf3f0fd80c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Crack propagation</topic><topic>Failure analysis</topic><topic>Fatigue</topic><topic>Fatigue failure</topic><topic>Fatigue life</topic><topic>Generalized linear models</topic><topic>Hierarchical Bayesian model</topic><topic>Materials fatigue</topic><topic>P-S-N curves</topic><topic>Parameter estimation</topic><topic>Random errors</topic><topic>Reliability analysis</topic><topic>S N diagrams</topic><topic>Statistical analysis</topic><topic>Statistical models</topic><topic>Survival</topic><topic>Survival analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Xiao-Wei</creatorcontrib><creatorcontrib>Lu, Da-Gang</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of fatigue</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Xiao-Wei</au><au>Lu, Da-Gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Survival analysis of fatigue data: Application of generalized linear models and hierarchical Bayesian model</atitle><jtitle>International journal of fatigue</jtitle><date>2018-12</date><risdate>2018</risdate><volume>117</volume><spage>39</spage><epage>46</epage><pages>39-46</pages><issn>0142-1123</issn><eissn>1879-3452</eissn><abstract>•The survival analysis is introduced to describe the fatigue failure process.•Generalized linear model has been established for the P-S-N curves estimation.•A hierarchical Bayesian model is employed to estimate the parameters in the model.•The fatigue design curves are described by a shape-fixed Weibull survivor function. The survival analysis is introduced to describe the fatigue failure process in this paper for obtaining a set of flexible and accurate probabilistic stress-life (P-S-N) curves in fatigue reliability analysis. The generalized linear models (GLMs) are applied as well for expressing a trend and random errors of the P-S-N curves simultaneously. A GLM, including a linear Basquin relation and a shape-fixed Weibull hazard function, has been established for the P-S-N curves estimation, then a hierarchical Bayesian model is employed to estimate their parameters. The fatigue probability design curves are generated by the survivor function or the resulting predictive distributions. Finally, a comparative example is presented to verify the effectiveness of the method.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijfatigue.2018.07.027</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0142-1123
ispartof International journal of fatigue, 2018-12, Vol.117, p.39-46
issn 0142-1123
1879-3452
language eng
recordid cdi_proquest_journals_2132228750
source ScienceDirect Journals (5 years ago - present)
subjects Bayesian analysis
Crack propagation
Failure analysis
Fatigue
Fatigue failure
Fatigue life
Generalized linear models
Hierarchical Bayesian model
Materials fatigue
P-S-N curves
Parameter estimation
Random errors
Reliability analysis
S N diagrams
Statistical analysis
Statistical models
Survival
Survival analysis
title Survival analysis of fatigue data: Application of generalized linear models and hierarchical Bayesian model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A44%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Survival%20analysis%20of%20fatigue%20data:%20Application%20of%20generalized%20linear%20models%20and%20hierarchical%20Bayesian%20model&rft.jtitle=International%20journal%20of%20fatigue&rft.au=Liu,%20Xiao-Wei&rft.date=2018-12&rft.volume=117&rft.spage=39&rft.epage=46&rft.pages=39-46&rft.issn=0142-1123&rft.eissn=1879-3452&rft_id=info:doi/10.1016/j.ijfatigue.2018.07.027&rft_dat=%3Cproquest_cross%3E2132228750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2132228750&rft_id=info:pmid/&rft_els_id=S014211231830313X&rfr_iscdi=true