Majorana stripe order on the surface of a three-dimensional topological insulator

The issue on the effect of interactions in topological states concerns not only interacting topological phases but also novel symmetry-breaking phases and phase transitions. Here we study the interaction effect on Majorana zero modes (MZMs) bound to a square vortex lattice in two-dimensional topolog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-10, Vol.98 (16), p.161409(R), Article 161409
Hauptverfasser: Kamiya, Y., Furusaki, A., Teo, J. C. Y., Chern, G.-W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The issue on the effect of interactions in topological states concerns not only interacting topological phases but also novel symmetry-breaking phases and phase transitions. Here we study the interaction effect on Majorana zero modes (MZMs) bound to a square vortex lattice in two-dimensional topological superconductors. Under the neutrality condition, where single-body hybridization between MZMs is prohibited by an emergent symmetry, a minimal square-lattice model for MZMs can be faithfully mapped to a quantum spin model, which has no sign problem in the world-line quantum Monte Carlo simulation. Guided by an insight from a further duality mapping, we demonstrate that the interaction induces a Majorana stripe state, a gapped state spontaneously breaking lattice translational and rotational symmetries, as opposed to the previously conjectured topological quantum criticality. Away from neutrality, a mean-field theory suggests a quantum critical point induced by hybridization.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.98.161409