The Case for Polymorphic Registers in Dataflow Computing
Heterogeneous systems are becoming increasingly popular, delivering high performance through hardware specialization. However, sequential data accesses may have a negative impact on performance. Data parallel solutions such as Polymorphic Register Files (PRFs) can potentially accelerate applications...
Gespeichert in:
Veröffentlicht in: | International journal of parallel programming 2018-12, Vol.46 (6), p.1185-1219 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Heterogeneous systems are becoming increasingly popular, delivering high performance through hardware specialization. However, sequential data accesses may have a negative impact on performance. Data parallel solutions such as Polymorphic Register Files (PRFs) can potentially accelerate applications by facilitating high-speed, parallel access to performance-critical data. This article shows how PRFs can be integrated into dataflow computational platforms. Our semi-automatic, compiler-based methodology generates customized PRFs and modifies the computational kernels to efficiently exploit them. We use a separable 2D convolution case study to evaluate the impact of memory latency and bandwidth on performance compared to a state-of-the-art NVIDIA Tesla C2050 GPU. We improve the throughput up to 56.17X and show that the PRF-augmented system outperforms the GPU for
9
×
9
or larger mask sizes, even in bandwidth-constrained systems. |
---|---|
ISSN: | 0885-7458 1573-7640 |
DOI: | 10.1007/s10766-017-0494-1 |