Depth-resolved charge reconstruction at the LaNiO3/CaMnO3 interface

Rational design of low-dimensional electronic phenomena at oxide interfaces is currently considered to be one of the most promising schemes for realizing new energy-efficient logic and memory devices. An atomically abrupt interface between paramagnetic LaNiO3 and antiferromagnetic CaMnO3 exhibits in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2018-10, Vol.98 (15), p.155103
Hauptverfasser: Chandrasena, R U, Flint, C L, Yang, W, Arab, Arian, Nemšák, S, Gehlmann, M, Özdöl, V B, Bisti, F, Wijesekara, K D, Meyer-Ilse, J, Gullikson, E, Arenholz, E, Ciston, J, Schneider, C M, Strocov, V N, Suzuki, Y, Gray, A X
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rational design of low-dimensional electronic phenomena at oxide interfaces is currently considered to be one of the most promising schemes for realizing new energy-efficient logic and memory devices. An atomically abrupt interface between paramagnetic LaNiO3 and antiferromagnetic CaMnO3 exhibits interfacial ferromagnetism, which can be tuned via a thickness-dependent metal-insulator transition in LaNiO3. Once fully understood, such emergent functionality could turn this archetypal Mott-interface system into a key building block for the above-mentioned future devices. Here, we use depth-resolved standing-wave photoemission spectroscopy in conjunction with scanning transmission electron microscopy and x-ray absorption spectroscopy, to demonstrate a depth-dependent charge reconstruction at the LaNiO3/CaMnO3 interface. Our measurements reveal an increased concentration of Mn3+ and Ni2+ cations at the interface, which create an electronic environment favorable for the emergence of interfacial ferromagnetism mediated via the Mn4+−Mn3+ ferromagnetic double exchange and Ni2+−O−Mn4+ superexchange mechanisms. Our findings suggest a strategy for designing functional Mott oxide heterostructures by tuning the interfacial cation characteristics via controlled manipulation of thickness, strain, and ionic defect states.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.98.155103