The new strategy for the concise presentation of sampling errors in the Italian Structural Business Statistics Survey
Reporting sampling errors of survey estimates is a problem that is commonly addressed when compiling a survey report. Because of the vast number of study variables or population characteristics and of interest domains in a survey, it is almost impossible to calculate and to publish the standard erro...
Gespeichert in:
Veröffentlicht in: | Statistical methods & applications 2006-08, Vol.15 (2), p.243-265 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Reporting sampling errors of survey estimates is a problem that is commonly addressed when compiling a survey report. Because of the vast number of study variables or population characteristics and of interest domains in a survey, it is almost impossible to calculate and to publish the standard errors for each statistic. A way of overcoming such problem would be to estimate indirectly the sampling errors by using generalized variance functions, which define a statistical relationship between the sampling errors and the corresponding estimates. One of the problems with this approach is that the model specification has to be consistent with a roughly constant design effect. If the design effects vary greatly across estimates, as in the case of the Business Surveys, the prediction model is not correctly specified and the least-square estimation is biased. In this paper, we show an extension of the generalized variance functions, which address the above problems, which could be used in contexts similar to those encountered in Business Surveys. The proposed method has been applied to the Italian Structural Business Statistics Survey case. [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 1618-2510 1613-981X |
DOI: | 10.1007/s10260-006-0021-9 |