The General Mathematical Theory of Plasticity and the Il’yushin Postulates of Macroscopic Definability and Isotropy

The physical laws characterizing the relation between stresses and strains are considered and analyzed in the general modern theory of elastoplastic deformations and in its postulates of macroscopic definability and isotropy for initially isotropic continuous media. The fundamentals of this theory i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Moscow University mechanics bulletin 2018-09, Vol.73 (5), p.101-116
1. Verfasser: Zubchaninov, V. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The physical laws characterizing the relation between stresses and strains are considered and analyzed in the general modern theory of elastoplastic deformations and in its postulates of macroscopic definability and isotropy for initially isotropic continuous media. The fundamentals of this theory in continuum mechanics were developed by A.A. Il’yushin in the mid-twentieth century. His theory of small elastoplastic deformations under simple loading became a generalization of Hencky’s deformation theory of flow, whereas his theory of elastoplastic processes which are close to simple loading became a generalization of the Saint-Venant–Mises flow theory to the case of hardening media. In these theories, the concepts of simple arid complex loading processes arid the concept of directing form change tensors are introduced; the Bridgman law of volume elastic change and the universal Roche–Eichinger laws of a single hardening curve under simple loading are adopted; and the Odquist hardening for plastic deformations is generalized to the case of elastoplastic hardening media for the processes of almost simple loading without consideration of a specific history of deformations for the trajectories with small arid mean curvatures. In this paper we discuss the possibility of using the isotropy postulate to estimate the effect of forming parameters in the stress-strain state appeared due to the strain-induced anisotropy during the change of the internal structures of materials. We also discuss the possibility of representing the second-rank symmetric stress and strain tensors in the form of vectors in the linear coordinate six-dimensional Euclidean space. An identity principle is proposed for tensors and vectors.
ISSN:0027-1330
1934-8452
DOI:10.3103/S0027133018050011