On Certain Families of Analytic Functions in the Hornich Space
Let ( H , ⊕ , ⊙ ) denote the Hornich space consisting of all locally univalent and analytic functions f on the unit disk D : = { z ∈ C : | z | < 1 } with f ( 0 ) = 0 = f ′ ( 0 ) - 1 for which arg f ′ is bounded in D . For f , g ∈ H and r , s ∈ R , we consider the integral operator I r , s ( z ) :...
Gespeichert in:
Veröffentlicht in: | Computational methods and function theory 2018-12, Vol.18 (4), p.643-659 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
H
,
⊕
,
⊙
)
denote the Hornich space consisting of all locally univalent and analytic functions
f
on the unit disk
D
:
=
{
z
∈
C
:
|
z
|
<
1
}
with
f
(
0
)
=
0
=
f
′
(
0
)
-
1
for which
arg
f
′
is bounded in
D
. For
f
,
g
∈
H
and
r
,
s
∈
R
, we consider the integral operator
I
r
,
s
(
z
)
:
=
∫
0
z
(
f
′
(
ξ
)
)
r
(
g
′
(
ξ
)
)
s
d
ξ
and determine all values of
r
and
s
for which the operator
(
f
,
g
)
↦
I
r
,
s
maps a specified subclass of
H
into another specified subclass of
H
. We also determine the set of extreme points for different subclasses of
H
with respect to the Hornich space structure. Using the extreme points, we develop a new approach to obtain the pre-Schwarzian norm estimate for different subclasses of
H
. We also consider a larger space
H
~
, whose linear structure is same as that of
H
and study the same problems as stated above for some subclasses of
H
~
. |
---|---|
ISSN: | 1617-9447 2195-3724 |
DOI: | 10.1007/s40315-018-0244-4 |