THE EHRESMANN-SCHEIN-NAMBOORIPAD THEOREM FOR INVERSE CATEGORIES

The Ehresmann-Schein-Nambooripad (ESN) Theorem asserts an equivalence between the category of inverse semigroups and the category of inductive groupoids. In this paper, we consider the category of inverse categories and functors – a natural generalization of inverse semigroups and semigroup homomorp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theory and applications of categories 2018-01, Vol.33 (27), p.813
Hauptverfasser: Dewolf, Darien, Pronk, Dorette
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Ehresmann-Schein-Nambooripad (ESN) Theorem asserts an equivalence between the category of inverse semigroups and the category of inductive groupoids. In this paper, we consider the category of inverse categories and functors – a natural generalization of inverse semigroups and semigroup homomorphisms – and extend the ESN Theorem to an equivalence between this category and the category of locally complete inductive groupoids and locally inductive functors. From the proof of this extension, we also generalize the ESN Theorem to an equivalence between the category of inverse semicategories and the category of locally inductive groupoids and to an equivalence between the category of inverse categories with oplax functors and the category of locally complete inductive groupoids and ordered functors.
ISSN:1201-561X