Self-duality, helicity conservation, and normal ordering in nonlinear QED
We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics. Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss t...
Gespeichert in:
Veröffentlicht in: | Physical review. D 2018-10, Vol.98 (8), Article 085015 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Physical review. D |
container_volume | 98 |
creator | Novotný, Jiří |
description | We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics. Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss the interrelation of the above two properties of the theory also at higher loops. As an illustration we present two explicit examples; namely we find the generalized normal ordered Lagrangian for the Born-Infeld theory and derive a semiclosed expression for the Lagrangian of the Bossard-Nicolai model (in terms of the weak field expansion with explicitly known coefficients) from its normal ordered form. |
doi_str_mv | 10.1103/PhysRevD.98.085015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2131204354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2131204354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-e10f16d3849c661422c6f374d6be8fd1d045ea72b0b805e5f74c04680dc618bb3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOOb-gFcFb9d5TpKm6aVsUwcDv69DmqSuo0tn0g72761MvToPh5f3hYeQa4QZIrDb580xvrrDYlbIGcgMMDsjI8pzSAFocf7PCJdkEuMWBhRQ5IgjsnpzTZXaXjd1d5wmG9fUZqDEtD66cNBd3fppor1NfBt2uknaYF2o_WdS--Hlm9o7HZKX5eKKXFS6iW7ye8fk4375Pn9M108Pq_ndOjUMiy51CBUKyyQvjBDIKTWiYjm3onSysmiBZ07ntIRSQuayKucGuJBgjUBZlmxMbk69-9B-9S52atv2wQ-TiiJDCpxlfEjRU8qENsbgKrUP9U6Ho0JQP9bUnzVVSHWyxr4BpjRgrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2131204354</pqid></control><display><type>article</type><title>Self-duality, helicity conservation, and normal ordering in nonlinear QED</title><source>American Physical Society Journals</source><creator>Novotný, Jiří</creator><creatorcontrib>Novotný, Jiří</creatorcontrib><description>We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics. Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss the interrelation of the above two properties of the theory also at higher loops. As an illustration we present two explicit examples; namely we find the generalized normal ordered Lagrangian for the Born-Infeld theory and derive a semiclosed expression for the Lagrangian of the Bossard-Nicolai model (in terms of the weak field expansion with explicitly known coefficients) from its normal ordered form.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.98.085015</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Born-Infeld theory ; Conservation ; Electrodynamics ; Helicity ; Thermal expansion</subject><ispartof>Physical review. D, 2018-10, Vol.98 (8), Article 085015</ispartof><rights>Copyright American Physical Society Oct 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-e10f16d3849c661422c6f374d6be8fd1d045ea72b0b805e5f74c04680dc618bb3</citedby><cites>FETCH-LOGICAL-c319t-e10f16d3849c661422c6f374d6be8fd1d045ea72b0b805e5f74c04680dc618bb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids></links><search><creatorcontrib>Novotný, Jiří</creatorcontrib><title>Self-duality, helicity conservation, and normal ordering in nonlinear QED</title><title>Physical review. D</title><description>We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics. Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss the interrelation of the above two properties of the theory also at higher loops. As an illustration we present two explicit examples; namely we find the generalized normal ordered Lagrangian for the Born-Infeld theory and derive a semiclosed expression for the Lagrangian of the Bossard-Nicolai model (in terms of the weak field expansion with explicitly known coefficients) from its normal ordered form.</description><subject>Born-Infeld theory</subject><subject>Conservation</subject><subject>Electrodynamics</subject><subject>Helicity</subject><subject>Thermal expansion</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOOb-gFcFb9d5TpKm6aVsUwcDv69DmqSuo0tn0g72761MvToPh5f3hYeQa4QZIrDb580xvrrDYlbIGcgMMDsjI8pzSAFocf7PCJdkEuMWBhRQ5IgjsnpzTZXaXjd1d5wmG9fUZqDEtD66cNBd3fppor1NfBt2uknaYF2o_WdS--Hlm9o7HZKX5eKKXFS6iW7ye8fk4375Pn9M108Pq_ndOjUMiy51CBUKyyQvjBDIKTWiYjm3onSysmiBZ07ntIRSQuayKucGuJBgjUBZlmxMbk69-9B-9S52atv2wQ-TiiJDCpxlfEjRU8qENsbgKrUP9U6Ho0JQP9bUnzVVSHWyxr4BpjRgrw</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Novotný, Jiří</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20181015</creationdate><title>Self-duality, helicity conservation, and normal ordering in nonlinear QED</title><author>Novotný, Jiří</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-e10f16d3849c661422c6f374d6be8fd1d045ea72b0b805e5f74c04680dc618bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Born-Infeld theory</topic><topic>Conservation</topic><topic>Electrodynamics</topic><topic>Helicity</topic><topic>Thermal expansion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Novotný, Jiří</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Novotný, Jiří</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-duality, helicity conservation, and normal ordering in nonlinear QED</atitle><jtitle>Physical review. D</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>98</volume><issue>8</issue><artnum>085015</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics. Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss the interrelation of the above two properties of the theory also at higher loops. As an illustration we present two explicit examples; namely we find the generalized normal ordered Lagrangian for the Born-Infeld theory and derive a semiclosed expression for the Lagrangian of the Bossard-Nicolai model (in terms of the weak field expansion with explicitly known coefficients) from its normal ordered form.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.98.085015</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2470-0010 |
ispartof | Physical review. D, 2018-10, Vol.98 (8), Article 085015 |
issn | 2470-0010 2470-0029 |
language | eng |
recordid | cdi_proquest_journals_2131204354 |
source | American Physical Society Journals |
subjects | Born-Infeld theory Conservation Electrodynamics Helicity Thermal expansion |
title | Self-duality, helicity conservation, and normal ordering in nonlinear QED |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A46%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-duality,%20helicity%20conservation,%20and%20normal%20ordering%20in%20nonlinear%20QED&rft.jtitle=Physical%20review.%20D&rft.au=Novotn%C3%BD,%20Ji%C5%99%C3%AD&rft.date=2018-10-15&rft.volume=98&rft.issue=8&rft.artnum=085015&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.98.085015&rft_dat=%3Cproquest_cross%3E2131204354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2131204354&rft_id=info:pmid/&rfr_iscdi=true |