Self-duality, helicity conservation, and normal ordering in nonlinear QED

We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics. Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-10, Vol.98 (8), Article 085015
1. Verfasser: Novotný, Jiří
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a proof of the equivalence of the electric-magnetic duality on one side and helicity conservation of the tree-level amplitudes on the other side within general models of nonlinear electrodynamics. Using modified Feynman rules derived from a generalized normal ordered Lagrangian, we discuss the interrelation of the above two properties of the theory also at higher loops. As an illustration we present two explicit examples; namely we find the generalized normal ordered Lagrangian for the Born-Infeld theory and derive a semiclosed expression for the Lagrangian of the Bossard-Nicolai model (in terms of the weak field expansion with explicitly known coefficients) from its normal ordered form.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.98.085015