Vanishing trace anomaly in flat spacetime

Quantum scale invariant regularization is a variant of dimensional regularization where the renormalization scale is treated as a dynamical field. But, rather than be regarded as a novel regularization method on par with dimensional regularization, momentum cutoff, Pauli-Villars etc., it should be u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2018-10, Vol.98 (8), Article 085001
Hauptverfasser: Lalak, Zygmunt, Olszewski, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Quantum scale invariant regularization is a variant of dimensional regularization where the renormalization scale is treated as a dynamical field. But, rather than be regarded as a novel regularization method on par with dimensional regularization, momentum cutoff, Pauli-Villars etc., it should be understood as a way to define a subset in the infinite space of nonrenormalizable models of certain type. The subset realizes the demand that renormalization scale, along with any other dimensionful parameters, should be interpreted as a dynamical field’s homogeneous background. This restriction is most straightforwardly implemented using dimensional regularization but it can hypothetically be imposed with any regularization method. Theories that satisfy it offer a new perspective on the radiative violation of global scale symmetry associated with RG functions. As a result of the quantum scale invariant regularization being implemented, the scale symmetry is preserved at the quantum level despite the RG functions being nonzero, as can be inspected at the level of composite quantum operators that govern dilatation of Green functions. We analyze these statements in explicit detail using a specific but easily generalized toy model with scalar fields.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.98.085001