On irregular functionals of SDEs and the Euler scheme
We prove a sharp upper bound for the error in terms of moments of , where X and are random variables and the function g is a function of bounded variation. We apply the results to the approximation of a solution to a stochastic differential equation at time T by the Euler scheme, and show that the a...
Gespeichert in:
Veröffentlicht in: | Finance and stochastics 2009-09, Vol.13 (3), p.381-401 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a sharp upper bound for the error
in terms of moments of
, where
X
and
are random variables and the function
g
is a function of bounded variation. We apply the results to the approximation of a solution to a stochastic differential equation at time
T
by the Euler scheme, and show that the approximation of the payoff of the binary option has asymptotically sharp strong convergence rate 1/2. This has consequences for multilevel Monte Carlo methods. |
---|---|
ISSN: | 0949-2984 1432-1122 |
DOI: | 10.1007/s00780-009-0099-7 |