On irregular functionals of SDEs and the Euler scheme

We prove a sharp upper bound for the error in terms of moments of , where X and are random variables and the function g is a function of bounded variation. We apply the results to the approximation of a solution to a stochastic differential equation at time T by the Euler scheme, and show that the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finance and stochastics 2009-09, Vol.13 (3), p.381-401
1. Verfasser: Avikainen, Rainer
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a sharp upper bound for the error in terms of moments of , where X and are random variables and the function g is a function of bounded variation. We apply the results to the approximation of a solution to a stochastic differential equation at time T by the Euler scheme, and show that the approximation of the payoff of the binary option has asymptotically sharp strong convergence rate 1/2. This has consequences for multilevel Monte Carlo methods.
ISSN:0949-2984
1432-1122
DOI:10.1007/s00780-009-0099-7