Durfee Rectangles and Pseudo‐Wronskian Equivalences for Hermite Polynomials
We derive identities between determinants whose entries are Hermite polynomials. These identities have a combinatorial interpretation in terms of Maya diagrams, partitions and Durfee rectangles, and serve to characterize an equivalence class of rational Darboux transformations. Since the determinant...
Gespeichert in:
Veröffentlicht in: | Studies in applied mathematics (Cambridge) 2018-11, Vol.141 (4), p.596-625 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive identities between determinants whose entries are Hermite polynomials. These identities have a combinatorial interpretation in terms of Maya diagrams, partitions and Durfee rectangles, and serve to characterize an equivalence class of rational Darboux transformations. Since the determinants have different orders, we analyze the problem of finding the minimal order determinant in each equivalence class, and describe the solution using an elegant graphical interpretation. The results are applied to provide a more efficient representation for exceptional Hermite polynomials and for rational solutions of the Painlevé IV equation. The latter are expressed in terms of the Okamoto and generalized Hermite polynomials. |
---|---|
ISSN: | 0022-2526 1467-9590 |
DOI: | 10.1111/sapm.12225 |