Pattern Classification for GIS Base on GK Clustering Algorithm

Four typical defects in GIS for PD detection are proposed, and the pulse, amplitude, phases, number of PD has been used to form the three-dimensional PQN matrix. Based on the PQN matrix, three two-dimensional distributions of Hqmax~Phi, Hqmean~Phi and Hn~Phi can be achieved. Then the new GK clusteri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-01, Vol.448-453, p.1955-1958
Hauptverfasser: Wang, Hui, Li, Xiu Wei, Yun, Yu Xin, Yuan, Hai Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Four typical defects in GIS for PD detection are proposed, and the pulse, amplitude, phases, number of PD has been used to form the three-dimensional PQN matrix. Based on the PQN matrix, three two-dimensional distributions of Hqmax~Phi, Hqmean~Phi and Hn~Phi can be achieved. Then the new GK clustering method is introduced to separate the four different defects according to separate the four different partial discharge defects in gas in GIS, according to the parameters of Skewness (Sk), Kurtosis (Ku), number of peaks (Pe), cross-correlation factor (CC) and the discharge factor Q.
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.448-453.1955