Domain decomposition preconditioners of Neumann–Neumann type for hp‐approximations on boundary layer meshes in three dimensions

We develop and analyse Neumann–Neumann methods for hp finite‐element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. These are meshes that are highly anisotropic where the aspect ratio typically grows exponentially with the polynomial de...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2004-01, Vol.24 (1), p.123-156
Hauptverfasser: Toselli, Andrea, Vasseur, Xavier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop and analyse Neumann–Neumann methods for hp finite‐element approximations of scalar elliptic problems on geometrically refined boundary layer meshes in three dimensions. These are meshes that are highly anisotropic where the aspect ratio typically grows exponentially with the polynomial degree. The condition number of our preconditioners is shown to be independent of the aspect ratio of the mesh and of potentially large jumps of the coefficients. In addition, it only grows polylogarithmically with the polynomial degree, as in the case of p approximations on shape‐regular meshes. This work generalizes our previous one on two‐dimensional problems in Toselli & Vasseur (2003a, submitted to Numerische Mathematik, 2003c to appear in Comput. Methods Appl. Mech. Engng.) and the estimates derived here can be employed to prove condition number bounds for certain types of FETI methods.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/24.1.123