Direct Z-scheme Cs2O–Bi2O3–ZnO heterostructures for photocatalytic overall water splitting
In this work, a direct Z-scheme Cs2O–Bi2O3–ZnO heterostructure without any electron mediator is fabricated by a simple solution combustion route. Cs2O is chosen as a sensitizer to expand the light absorption range, and in addition, its conduction band minimum (CBM) and valence band maximum (VBM) pos...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2018, Vol.6 (43), p.21379-21388 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, a direct Z-scheme Cs2O–Bi2O3–ZnO heterostructure without any electron mediator is fabricated by a simple solution combustion route. Cs2O is chosen as a sensitizer to expand the light absorption range, and in addition, its conduction band minimum (CBM) and valence band maximum (VBM) positions are suitable to construct a direct Z-scheme system with ZnO and Bi2O3. Structural and elemental analyses show clear evidence for heterostructure formation. The Z-scheme charge carrier migration pathway in Cs2O–Bi2O3–ZnO is confirmed by high resolution XPS and ESR studies. The fabricated heterostructure exhibits a good ability to split water to H2 and O2 under simulated sunlight irradiation without any sacrificial agents or co-catalysts and has excellent photostability. The apparent quantum efficiency of the optimized Cs2O–Bi2O3–ZnO heterostructure reaches up to 0.92% at 420 nm. The excellent efficiency of this fabricated heterostructure is attributed to the efficient charge carrier separation, the high redox potential of the CBM and VBM benefiting from a direct Z-scheme charge carrier migration pathway and the extended light absorption range. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/c8ta08033j |