Infinitely-many Primes in \(\mathbb{N}\): A Graph Theoretic Approach
A graph \(G\) is defined encapsulating the number theoretic notion of the Fundamental Theorem of Arithmetic. We then provide a graph theoretic approach to the fundamental results on the coprimality of two natural numbers, through the use of an adjacency operator \(\hat{\mathbf{A}}(G)\). Lastly, thes...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2018-11 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A graph \(G\) is defined encapsulating the number theoretic notion of the Fundamental Theorem of Arithmetic. We then provide a graph theoretic approach to the fundamental results on the coprimality of two natural numbers, through the use of an adjacency operator \(\hat{\mathbf{A}}(G)\). Lastly, these results are used to give an alternate proof to the known result that there are infinitely many primes in the natural numbers \(\mathbb{N}\). |
---|---|
ISSN: | 2331-8422 |