Finite elements on degenerate meshes: inverse-type inequalities and applications

In this paper we obtain a range of inverse-type inequalities which are applicable to finite-element functions on general classes of meshes, including degenerate meshes obtained by anisotropic refinement. These are obtained for Sobolev norms of positive, zero and negative order. In contrast to classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2005-04, Vol.25 (2), p.379-407
Hauptverfasser: Graham, I. G., Hackbusch, W., Sauter, S. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we obtain a range of inverse-type inequalities which are applicable to finite-element functions on general classes of meshes, including degenerate meshes obtained by anisotropic refinement. These are obtained for Sobolev norms of positive, zero and negative order. In contrast to classical inverse estimates, negative powers of the minimum mesh diameter are avoided. We give two applications of these estimates in the context of boundary elements: (i) to the analysis of quadrature error in discrete Galerkin methods and (ii) to the analysis of the panel clustering algorithm. Our results show that degeneracy in the meshes yields no degradation in the approximation properties of these methods.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drh017