Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines

We present methods either for interpolating data or for fitting scattered data on a 2D smooth manifold Ω. The methods are based on a local bivariate Powell–Sabin interpolation scheme, and make use of a family of charts {(Uξ, ϕξ)}ξ ∈ Ω satisfying certain conditions of smooth dependence on ξ. If Ω is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IMA journal of numerical analysis 2008-10, Vol.28 (4), p.785-805
Hauptverfasser: Davydov, Oleg, Schumaker, Larry L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present methods either for interpolating data or for fitting scattered data on a 2D smooth manifold Ω. The methods are based on a local bivariate Powell–Sabin interpolation scheme, and make use of a family of charts {(Uξ, ϕξ)}ξ ∈ Ω satisfying certain conditions of smooth dependence on ξ. If Ω is a C2-manifold embedded into ℝ3, then projections into tangent planes can be employed. The data-fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function.
ISSN:0272-4979
1464-3642
DOI:10.1093/imanum/drm033