Interpolation and scattered data fitting on manifolds using projected Powell–Sabin splines
We present methods either for interpolating data or for fitting scattered data on a 2D smooth manifold Ω. The methods are based on a local bivariate Powell–Sabin interpolation scheme, and make use of a family of charts {(Uξ, ϕξ)}ξ ∈ Ω satisfying certain conditions of smooth dependence on ξ. If Ω is...
Gespeichert in:
Veröffentlicht in: | IMA journal of numerical analysis 2008-10, Vol.28 (4), p.785-805 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present methods either for interpolating data or for fitting scattered data on a 2D smooth manifold Ω. The methods are based on a local bivariate Powell–Sabin interpolation scheme, and make use of a family of charts {(Uξ, ϕξ)}ξ ∈ Ω satisfying certain conditions of smooth dependence on ξ. If Ω is a C2-manifold embedded into ℝ3, then projections into tangent planes can be employed. The data-fitting method is a two-stage method. We prove that the resulting function on the manifold is continuously differentiable, and establish error bounds for both methods for the case when the data are generated by a smooth function. |
---|---|
ISSN: | 0272-4979 1464-3642 |
DOI: | 10.1093/imanum/drm033 |