Topological tight-binding models from nontrivial square roots

We describe a versatile mechanism that provides tight-binding models with an enriched, topologically nontrivial band structure. The mechanism is algebraic in nature, and leads to tight-binding models that can be interpreted as a nontrivial square root of a parent lattice Hamiltonian-in analogy to th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2017-04, Vol.95 (16), p.165109, Article 165109
Hauptverfasser: Arkinstall, J., Teimourpour, M. H., Feng, L., El-Ganainy, R., Schomerus, H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We describe a versatile mechanism that provides tight-binding models with an enriched, topologically nontrivial band structure. The mechanism is algebraic in nature, and leads to tight-binding models that can be interpreted as a nontrivial square root of a parent lattice Hamiltonian-in analogy to the passage from a Klein-Gordon equation to a Dirac equation. In the tight-binding setting, the square-root operation admits to induce spectral symmetries at the expense of broken crystal symmetries. As we illustrate in detail for a simple one-dimensional example, the emergent and inherited spectral symmetries equip the energy gaps with independent topological quantum numbers that control the formation of topologically protected states. We also describe an implementation of this system in silicon photonic structures, outline applications in higher dimensions, and provide a general argument for the origin and nature of the emergent symmetries, which are typically nonsymmorphic.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.95.165109