Nano-multilayered coatings of (TiAlSiY)N/MeN (Me=Mo, Cr and Zr): Influence of composition of the alternating layer on their structural and mechanical properties

Multilayered design showed itself to advantage for improvement of functional nitride coatings, which are widely required in various industry applications. This article reports on deposition and detailed characterization series of combined nano-multilayered coatings based on (TiAlSiY)N with changes i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2018-10, Vol.767, p.483-495
Hauptverfasser: Kravchenko, Ya.O., Coy, L.E., Peplińska, B., Iatsunskyi, I., Załęski, K., Kempiǹski, M., Beresnev, V.M., Konarski, P., Jurga, S., Pogrebnjak, A.D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multilayered design showed itself to advantage for improvement of functional nitride coatings, which are widely required in various industry applications. This article reports on deposition and detailed characterization series of combined nano-multilayered coatings based on (TiAlSiY)N with changes in components of alternating binary layers. Vacuum-arc deposited (TiAlSiY)N/MoN, (TiAlSiY)N/CrN and (TiAlSiY)N/ZrN coatings were analyzed by means of various experimental techniques such as SEM with EDS, XRD and GIXRD, SIMS, XPS and Raman spectroscopy. Microstructure of (TiAlSiY)N/MoN coating was characterized by creation of fine-grained fcc-AlTiN phase of (200) plane with congruent growth of γ-Mo2N (200) due to high isostruturality of lattices of alternating layers. The formation of fcc-AlYTiN phase of (111) plane and fcc-TiCrN phase of (200) plane were observed in multilayered (TiAlSiY)N/CrN coating and referred to the loss of clear interfaces and the formation of transition layers due to the diffusion of Ti atoms. Nano-multilayered (TiAlSiY)N/ZrN system showed the formation of stoichiometric fcc compounds of TiN with (200) plane and ZrN with (111) plane, respectively. The evaluation of mechanical properties as nanohardness, reduced elastic modulus, elastic strain prior to failure, and resistance to plastic deformation measurements was performed. The presented results showed important information about the physical and mechanical properties of new nano-multilayered systems for their subsequent application, as well as improvement of existing achievements. [Display omitted] •Nano-multilayered (TiAlSiY)N/MeN coatings were fabricated using vacuum arc deposition.•The congruent growth of γ -Mo2N grains was observed in the layers of MexN/MoN coatings.•CrN layer as a top one increase the oxidation resistance of the MexN/CrN coating.•Low friction coefficient and cohesive wear were observed for the MexN/ZrN system.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2018.07.090