The bonding, charge distribution, spin ordering, optical, and elastic properties of four MAX phases Cr2AX (A = Al or Ge, X = C or N): From density functional theory study
In this work, we assess a full spectrum of properties (chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr2AC (A = Al, Ge) and their hypothetical nitride counterparts Cr2AN (A = Al, Ge) based on density functional theory calculations. The calculated total ene...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2013-11, Vol.114 (18) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this work, we assess a full spectrum of properties
(chemical bonding, charge distribution, spin ordering, optical, and elastic properties) of Cr2AC (A = Al, Ge) and their hypothetical nitride counterparts Cr2AN (A = Al, Ge) based on density functional theory calculations. The calculated total energy values indicate that a variety of spin ordering of these four compounds depending on interlayer-interactions between M-A and M-X within the sublattice, which is supported by bonding analysis. MAX phase materials are discovered to possess exotic magnetic properties which indicates that these materials could serve as promising candidates for novel layered magnetic materials for various electronic and spintronic applications. Further analysis of optical properties for two polarization vectors of Cr2AX shows that the reflectivity is high in the visible-ultraviolet region up to ∼15 eV suggesting Cr2AX as a promising candidate for use as a coating material. The elastic coefficients (Cij) and bulk mechanical properties
[bulk modulus (K), shear modulus (G), Young's modulus (E), Poisson's ratio (η), and Pugh ratio (G/K)] of these four Cr2AX compounds are also calculated and analyzed, which pave the way to predict or design new MAX phases that are less brittle or tougher by having a lower G/K value or higher η.
At the request of the authors and editor, this article is being retracted effective 14 March 2014. |
---|---|
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4829485 |