Modeling self-efficacy in intelligent tutoring systems: An inductive approach
Self-efficacy is an individual’s belief about her ability to perform well in a given situation. Because self-efficacious students are effective learners, endowing intelligent tutoring systems with the ability to diagnose self-efficacy could lead to improved pedagogy. Self-efficacy is influenced by (...
Gespeichert in:
Veröffentlicht in: | User modeling and user-adapted interaction 2008-02, Vol.18 (1-2), p.81-123 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Self-efficacy is an individual’s belief about her ability to perform well in a given situation. Because self-efficacious students are effective learners, endowing intelligent tutoring systems with the ability to diagnose self-efficacy could lead to improved pedagogy. Self-efficacy is influenced by (and influences) affective state. Thus, physiological data might be used to predict a student’s level of self-efficacy. This article investigates an inductive approach to automatically constructing models of self-efficacy that can be used at runtime to inform pedagogical decisions. It reports on two complementary empirical studies. In the first study, two families of self-efficacy models were induced: a static self-efficacy model, learned solely from pre-test (non-intrusively collected) data, and a dynamic self-efficacy model, learned from both pre-test data as well as runtime physiological data collected with a biofeedback apparatus. In the second empirical study, a similar experimental design was applied to an interactive narrative-centered learning environment. Self-efficacy models were induced from combinations of static and dynamic information, including pre-test data, physiological data, and observations of student behavior in the learning environment. The highest performing induced naïve Bayes models correctly classified 85.2% of instances in the first empirical study and 82.1% of instances in the second empirical study. The highest performing decision tree models correctly classified 86.9% of instances in the first study and 87.3% of instances in the second study. |
---|---|
ISSN: | 0924-1868 1573-1391 |
DOI: | 10.1007/s11257-007-9040-y |