Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity

Objective Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties. Resuts The residues located at the crevice-like binding site of four representative lipases including Thermomyces lanuginosus lipases (TLL and Lip), Rhizopus oryzae lipase (RO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology letters 2019-01, Vol.41 (1), p.137-146
Hauptverfasser: Ding, Xu, Tang, Xiao-Ling, Zheng, Ren-Chao, Zheng, Yu-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 146
container_issue 1
container_start_page 137
container_title Biotechnology letters
container_volume 41
creator Ding, Xu
Tang, Xiao-Ling
Zheng, Ren-Chao
Zheng, Yu-Guo
description Objective Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties. Resuts The residues located at the crevice-like binding site of four representative lipases including Thermomyces lanuginosus lipases (TLL and Lip), Rhizopus oryzae lipase (ROL), and Rhizomucor miehei lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards p -nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C. Conclusions The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases.
doi_str_mv 10.1007/s10529-018-2620-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2128927337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128927337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</originalsourceid><addsrcrecordid>eNp1kclOBCEURYnRaDt8gBtD4hoFqiiapTFOiYkbXROGV4q2VAm0SX-GfyxlO6xckcC59_HuReiQ0RNGqTzNjAquCGVzwjtOSbeBZkzIhnRSdptoRlnLiGgV30G7OT9TSpWkchvtNLRRnDI5Qx83HmIJfXCmhCFiEz2G-BgiQArxEQ89Lk-AX2CFE-Tgl5CxKV93LsF7cEAW4QWwDdFPfA4FJtEijCZXtorGIeZgF4D7IWHjSngPZfU1KC9tLslURR7BTZ-oL_toqzeLDAff5x56uLy4P78mt3dXN-dnt8S1VBXiqGOSGcFaZaVtrVTedY2zTe-lFN5yzlrXOyVE3bQXNZC5aI0D4Eqq1vNmDx2vfcc0vNW1in4elinWkZozPldcNo2sFFtTLg05J-j1mMKrSSvNqJ5K0OsSdC1BTyXormqOvp2X9hX8r-In9QrwNZDHKWRIf6P_d_0EghaUog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128927337</pqid></control><display><type>article</type><title>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Ding, Xu ; Tang, Xiao-Ling ; Zheng, Ren-Chao ; Zheng, Yu-Guo</creator><creatorcontrib>Ding, Xu ; Tang, Xiao-Ling ; Zheng, Ren-Chao ; Zheng, Yu-Guo</creatorcontrib><description>Objective Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties. Resuts The residues located at the crevice-like binding site of four representative lipases including Thermomyces lanuginosus lipases (TLL and Lip), Rhizopus oryzae lipase (ROL), and Rhizomucor miehei lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards p -nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C. Conclusions The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-018-2620-6</identifier><identifier>PMID: 30392017</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amino Acid Substitution ; Applied Microbiology ; Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Binding sites ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Carbon ; Catalysis ; Chains ; Esters ; Fungi ; Life Sciences ; Lipase ; Lipase - chemistry ; Lipase - genetics ; Microbiology ; Mutagenesis, Site-Directed ; Mutation ; Original Research Paper ; Residues ; Rhizomucor miehei ; Rhizopus oryzae ; Site-directed mutagenesis ; Structural analysis ; Structure-Activity Relationship ; Substrate preferences ; Substrate Specificity ; Substrates ; Temperature preferences</subject><ispartof>Biotechnology letters, 2019-01, Vol.41 (1), p.137-146</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Biotechnology Letters is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</citedby><cites>FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-018-2620-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-018-2620-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30392017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Xu</creatorcontrib><creatorcontrib>Tang, Xiao-Ling</creatorcontrib><creatorcontrib>Zheng, Ren-Chao</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><title>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objective Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties. Resuts The residues located at the crevice-like binding site of four representative lipases including Thermomyces lanuginosus lipases (TLL and Lip), Rhizopus oryzae lipase (ROL), and Rhizomucor miehei lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards p -nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C. Conclusions The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases.</description><subject>Amino Acid Substitution</subject><subject>Applied Microbiology</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chains</subject><subject>Esters</subject><subject>Fungi</subject><subject>Life Sciences</subject><subject>Lipase</subject><subject>Lipase - chemistry</subject><subject>Lipase - genetics</subject><subject>Microbiology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Original Research Paper</subject><subject>Residues</subject><subject>Rhizomucor miehei</subject><subject>Rhizopus oryzae</subject><subject>Site-directed mutagenesis</subject><subject>Structural analysis</subject><subject>Structure-Activity Relationship</subject><subject>Substrate preferences</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Temperature preferences</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kclOBCEURYnRaDt8gBtD4hoFqiiapTFOiYkbXROGV4q2VAm0SX-GfyxlO6xckcC59_HuReiQ0RNGqTzNjAquCGVzwjtOSbeBZkzIhnRSdptoRlnLiGgV30G7OT9TSpWkchvtNLRRnDI5Qx83HmIJfXCmhCFiEz2G-BgiQArxEQ89Lk-AX2CFE-Tgl5CxKV93LsF7cEAW4QWwDdFPfA4FJtEijCZXtorGIeZgF4D7IWHjSngPZfU1KC9tLslURR7BTZ-oL_toqzeLDAff5x56uLy4P78mt3dXN-dnt8S1VBXiqGOSGcFaZaVtrVTedY2zTe-lFN5yzlrXOyVE3bQXNZC5aI0D4Eqq1vNmDx2vfcc0vNW1in4elinWkZozPldcNo2sFFtTLg05J-j1mMKrSSvNqJ5K0OsSdC1BTyXormqOvp2X9hX8r-In9QrwNZDHKWRIf6P_d_0EghaUog</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ding, Xu</creator><creator>Tang, Xiao-Ling</creator><creator>Zheng, Ren-Chao</creator><creator>Zheng, Yu-Guo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</title><author>Ding, Xu ; Tang, Xiao-Ling ; Zheng, Ren-Chao ; Zheng, Yu-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Substitution</topic><topic>Applied Microbiology</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chains</topic><topic>Esters</topic><topic>Fungi</topic><topic>Life Sciences</topic><topic>Lipase</topic><topic>Lipase - chemistry</topic><topic>Lipase - genetics</topic><topic>Microbiology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Original Research Paper</topic><topic>Residues</topic><topic>Rhizomucor miehei</topic><topic>Rhizopus oryzae</topic><topic>Site-directed mutagenesis</topic><topic>Structural analysis</topic><topic>Structure-Activity Relationship</topic><topic>Substrate preferences</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Temperature preferences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xu</creatorcontrib><creatorcontrib>Tang, Xiao-Ling</creatorcontrib><creatorcontrib>Zheng, Ren-Chao</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xu</au><au>Tang, Xiao-Ling</au><au>Zheng, Ren-Chao</au><au>Zheng, Yu-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>41</volume><issue>1</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>Objective Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties. Resuts The residues located at the crevice-like binding site of four representative lipases including Thermomyces lanuginosus lipases (TLL and Lip), Rhizopus oryzae lipase (ROL), and Rhizomucor miehei lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards p -nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C. Conclusions The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>30392017</pmid><doi>10.1007/s10529-018-2620-6</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0141-5492
ispartof Biotechnology letters, 2019-01, Vol.41 (1), p.137-146
issn 0141-5492
1573-6776
language eng
recordid cdi_proquest_journals_2128927337
source MEDLINE; SpringerLink Journals
subjects Amino Acid Substitution
Applied Microbiology
Bacteria - enzymology
Bacteria - genetics
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Binding sites
Biochemistry
Biomedical and Life Sciences
Biotechnology
Carbon
Catalysis
Chains
Esters
Fungi
Life Sciences
Lipase
Lipase - chemistry
Lipase - genetics
Microbiology
Mutagenesis, Site-Directed
Mutation
Original Research Paper
Residues
Rhizomucor miehei
Rhizopus oryzae
Site-directed mutagenesis
Structural analysis
Structure-Activity Relationship
Substrate preferences
Substrate Specificity
Substrates
Temperature preferences
title Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20engineering%20of%20the%20key%20residues%20at%20the%20crevice-like%20binding%20site%20of%20lipases%20responsible%20for%20activity%20and%20substrate%20specificity&rft.jtitle=Biotechnology%20letters&rft.au=Ding,%20Xu&rft.date=2019-01-01&rft.volume=41&rft.issue=1&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-018-2620-6&rft_dat=%3Cproquest_cross%3E2128927337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128927337&rft_id=info:pmid/30392017&rfr_iscdi=true