Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity
Objective Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties. Resuts The residues located at the crevice-like binding site of four representative lipases including Thermomyces lanuginosus lipases (TLL and Lip), Rhizopus oryzae lipase (RO...
Gespeichert in:
Veröffentlicht in: | Biotechnology letters 2019-01, Vol.41 (1), p.137-146 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 146 |
---|---|
container_issue | 1 |
container_start_page | 137 |
container_title | Biotechnology letters |
container_volume | 41 |
creator | Ding, Xu Tang, Xiao-Ling Zheng, Ren-Chao Zheng, Yu-Guo |
description | Objective
Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties.
Resuts
The residues located at the crevice-like binding site of four representative lipases including
Thermomyces lanuginosus
lipases (TLL and Lip),
Rhizopus oryzae
lipase (ROL), and
Rhizomucor miehei
lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards
p
-nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C.
Conclusions
The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases. |
doi_str_mv | 10.1007/s10529-018-2620-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2128927337</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128927337</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</originalsourceid><addsrcrecordid>eNp1kclOBCEURYnRaDt8gBtD4hoFqiiapTFOiYkbXROGV4q2VAm0SX-GfyxlO6xckcC59_HuReiQ0RNGqTzNjAquCGVzwjtOSbeBZkzIhnRSdptoRlnLiGgV30G7OT9TSpWkchvtNLRRnDI5Qx83HmIJfXCmhCFiEz2G-BgiQArxEQ89Lk-AX2CFE-Tgl5CxKV93LsF7cEAW4QWwDdFPfA4FJtEijCZXtorGIeZgF4D7IWHjSngPZfU1KC9tLslURR7BTZ-oL_toqzeLDAff5x56uLy4P78mt3dXN-dnt8S1VBXiqGOSGcFaZaVtrVTedY2zTe-lFN5yzlrXOyVE3bQXNZC5aI0D4Eqq1vNmDx2vfcc0vNW1in4elinWkZozPldcNo2sFFtTLg05J-j1mMKrSSvNqJ5K0OsSdC1BTyXormqOvp2X9hX8r-In9QrwNZDHKWRIf6P_d_0EghaUog</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128927337</pqid></control><display><type>article</type><title>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Ding, Xu ; Tang, Xiao-Ling ; Zheng, Ren-Chao ; Zheng, Yu-Guo</creator><creatorcontrib>Ding, Xu ; Tang, Xiao-Ling ; Zheng, Ren-Chao ; Zheng, Yu-Guo</creatorcontrib><description>Objective
Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties.
Resuts
The residues located at the crevice-like binding site of four representative lipases including
Thermomyces lanuginosus
lipases (TLL and Lip),
Rhizopus oryzae
lipase (ROL), and
Rhizomucor miehei
lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards
p
-nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C.
Conclusions
The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases.</description><identifier>ISSN: 0141-5492</identifier><identifier>EISSN: 1573-6776</identifier><identifier>DOI: 10.1007/s10529-018-2620-6</identifier><identifier>PMID: 30392017</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Amino Acid Substitution ; Applied Microbiology ; Bacteria - enzymology ; Bacteria - genetics ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Binding sites ; Biochemistry ; Biomedical and Life Sciences ; Biotechnology ; Carbon ; Catalysis ; Chains ; Esters ; Fungi ; Life Sciences ; Lipase ; Lipase - chemistry ; Lipase - genetics ; Microbiology ; Mutagenesis, Site-Directed ; Mutation ; Original Research Paper ; Residues ; Rhizomucor miehei ; Rhizopus oryzae ; Site-directed mutagenesis ; Structural analysis ; Structure-Activity Relationship ; Substrate preferences ; Substrate Specificity ; Substrates ; Temperature preferences</subject><ispartof>Biotechnology letters, 2019-01, Vol.41 (1), p.137-146</ispartof><rights>Springer Nature B.V. 2018</rights><rights>Biotechnology Letters is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</citedby><cites>FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10529-018-2620-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10529-018-2620-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30392017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ding, Xu</creatorcontrib><creatorcontrib>Tang, Xiao-Ling</creatorcontrib><creatorcontrib>Zheng, Ren-Chao</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><title>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</title><title>Biotechnology letters</title><addtitle>Biotechnol Lett</addtitle><addtitle>Biotechnol Lett</addtitle><description>Objective
Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties.
Resuts
The residues located at the crevice-like binding site of four representative lipases including
Thermomyces lanuginosus
lipases (TLL and Lip),
Rhizopus oryzae
lipase (ROL), and
Rhizomucor miehei
lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards
p
-nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C.
Conclusions
The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases.</description><subject>Amino Acid Substitution</subject><subject>Applied Microbiology</subject><subject>Bacteria - enzymology</subject><subject>Bacteria - genetics</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Carbon</subject><subject>Catalysis</subject><subject>Chains</subject><subject>Esters</subject><subject>Fungi</subject><subject>Life Sciences</subject><subject>Lipase</subject><subject>Lipase - chemistry</subject><subject>Lipase - genetics</subject><subject>Microbiology</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Original Research Paper</subject><subject>Residues</subject><subject>Rhizomucor miehei</subject><subject>Rhizopus oryzae</subject><subject>Site-directed mutagenesis</subject><subject>Structural analysis</subject><subject>Structure-Activity Relationship</subject><subject>Substrate preferences</subject><subject>Substrate Specificity</subject><subject>Substrates</subject><subject>Temperature preferences</subject><issn>0141-5492</issn><issn>1573-6776</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kclOBCEURYnRaDt8gBtD4hoFqiiapTFOiYkbXROGV4q2VAm0SX-GfyxlO6xckcC59_HuReiQ0RNGqTzNjAquCGVzwjtOSbeBZkzIhnRSdptoRlnLiGgV30G7OT9TSpWkchvtNLRRnDI5Qx83HmIJfXCmhCFiEz2G-BgiQArxEQ89Lk-AX2CFE-Tgl5CxKV93LsF7cEAW4QWwDdFPfA4FJtEijCZXtorGIeZgF4D7IWHjSngPZfU1KC9tLslURR7BTZ-oL_toqzeLDAff5x56uLy4P78mt3dXN-dnt8S1VBXiqGOSGcFaZaVtrVTedY2zTe-lFN5yzlrXOyVE3bQXNZC5aI0D4Eqq1vNmDx2vfcc0vNW1in4elinWkZozPldcNo2sFFtTLg05J-j1mMKrSSvNqJ5K0OsSdC1BTyXormqOvp2X9hX8r-In9QrwNZDHKWRIf6P_d_0EghaUog</recordid><startdate>20190101</startdate><enddate>20190101</enddate><creator>Ding, Xu</creator><creator>Tang, Xiao-Ling</creator><creator>Zheng, Ren-Chao</creator><creator>Zheng, Yu-Guo</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QR</scope><scope>7T7</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20190101</creationdate><title>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</title><author>Ding, Xu ; Tang, Xiao-Ling ; Zheng, Ren-Chao ; Zheng, Yu-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-c0c171a5149b7b4b79dc63cb3fd775db2214cfc955920f5776854acee29794d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Amino Acid Substitution</topic><topic>Applied Microbiology</topic><topic>Bacteria - enzymology</topic><topic>Bacteria - genetics</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Carbon</topic><topic>Catalysis</topic><topic>Chains</topic><topic>Esters</topic><topic>Fungi</topic><topic>Life Sciences</topic><topic>Lipase</topic><topic>Lipase - chemistry</topic><topic>Lipase - genetics</topic><topic>Microbiology</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Original Research Paper</topic><topic>Residues</topic><topic>Rhizomucor miehei</topic><topic>Rhizopus oryzae</topic><topic>Site-directed mutagenesis</topic><topic>Structural analysis</topic><topic>Structure-Activity Relationship</topic><topic>Substrate preferences</topic><topic>Substrate Specificity</topic><topic>Substrates</topic><topic>Temperature preferences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ding, Xu</creatorcontrib><creatorcontrib>Tang, Xiao-Ling</creatorcontrib><creatorcontrib>Zheng, Ren-Chao</creatorcontrib><creatorcontrib>Zheng, Yu-Guo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Chemoreception Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Biotechnology letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ding, Xu</au><au>Tang, Xiao-Ling</au><au>Zheng, Ren-Chao</au><au>Zheng, Yu-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity</atitle><jtitle>Biotechnology letters</jtitle><stitle>Biotechnol Lett</stitle><addtitle>Biotechnol Lett</addtitle><date>2019-01-01</date><risdate>2019</risdate><volume>41</volume><issue>1</issue><spage>137</spage><epage>146</epage><pages>137-146</pages><issn>0141-5492</issn><eissn>1573-6776</eissn><abstract>Objective
Rational engineering of the crevice-like binding site of lipases for improvement of lipases’ catalytic properties.
Resuts
The residues located at the crevice-like binding site of four representative lipases including
Thermomyces lanuginosus
lipases (TLL and Lip),
Rhizopus oryzae
lipase (ROL), and
Rhizomucor miehei
lipase (RML) were identified through structural analysis. The residues at the bottom of the crevice-like binding site recognizing the substrates with short/medium carbon chain length and those located at the right-hand wall of the surface crevice region affecting the product release were changed by site-directed mutagenesis. The corresponding double mutants exhibited ~ 5 to 14-fold higher activity towards
p
-nitrophenyl esters than their wild types, and their substrate preference shifted to acyl moiety with shorter carbon chain length. In addition, the mutations led to an increase of B-factor, resulting in decrease of their optimum temperature by 10–20 °C.
Conclusions
The key residues located at the crevice-like binding site play important roles in determining lipase activity, substrate preference and optimum temperature, which offers a useful new paradigm for facilitating rational design of lipases.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>30392017</pmid><doi>10.1007/s10529-018-2620-6</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-5492 |
ispartof | Biotechnology letters, 2019-01, Vol.41 (1), p.137-146 |
issn | 0141-5492 1573-6776 |
language | eng |
recordid | cdi_proquest_journals_2128927337 |
source | MEDLINE; SpringerLink Journals |
subjects | Amino Acid Substitution Applied Microbiology Bacteria - enzymology Bacteria - genetics Bacterial Proteins - chemistry Bacterial Proteins - genetics Binding sites Biochemistry Biomedical and Life Sciences Biotechnology Carbon Catalysis Chains Esters Fungi Life Sciences Lipase Lipase - chemistry Lipase - genetics Microbiology Mutagenesis, Site-Directed Mutation Original Research Paper Residues Rhizomucor miehei Rhizopus oryzae Site-directed mutagenesis Structural analysis Structure-Activity Relationship Substrate preferences Substrate Specificity Substrates Temperature preferences |
title | Identification and engineering of the key residues at the crevice-like binding site of lipases responsible for activity and substrate specificity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T10%3A59%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20and%20engineering%20of%20the%20key%20residues%20at%20the%20crevice-like%20binding%20site%20of%20lipases%20responsible%20for%20activity%20and%20substrate%20specificity&rft.jtitle=Biotechnology%20letters&rft.au=Ding,%20Xu&rft.date=2019-01-01&rft.volume=41&rft.issue=1&rft.spage=137&rft.epage=146&rft.pages=137-146&rft.issn=0141-5492&rft.eissn=1573-6776&rft_id=info:doi/10.1007/s10529-018-2620-6&rft_dat=%3Cproquest_cross%3E2128927337%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128927337&rft_id=info:pmid/30392017&rfr_iscdi=true |