Variational aspects of homogeneous geodesics on generalized flag manifolds and applications

We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to produce conjugate points in the complex projective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of global analysis and geometry 2019-04, Vol.55 (3), p.451-477
Hauptverfasser: Prado, Rafaela F. do, Grama, Lino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to produce conjugate points in the complex projective space C P 2 n + 1 = Sp ( n + 1 ) / ( U ( 1 ) × Sp ( n ) ) .
ISSN:0232-704X
1572-9060
DOI:10.1007/s10455-018-9635-z