Variational aspects of homogeneous geodesics on generalized flag manifolds and applications
We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to produce conjugate points in the complex projective...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2019-04, Vol.55 (3), p.451-477 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study conjugate points along homogeneous geodesics in generalized flag manifolds. This is done by analyzing the second variation of the energy of such geodesics. We also give an example of how the homogeneous Ricci flow can evolve in such way to produce conjugate points in the complex projective space
C
P
2
n
+
1
=
Sp
(
n
+
1
)
/
(
U
(
1
)
×
Sp
(
n
)
)
. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-018-9635-z |