The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]

Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2018-12, Vol.30 (4), p.1703-1729
Hauptverfasser: Howard, Peter, Jung, Soyeun, Kwon, Bongsuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1729
container_issue 4
container_start_page 1703
container_title Journal of dynamics and differential equations
container_volume 30
creator Howard, Peter
Jung, Soyeun
Kwon, Bongsuk
description Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on R with periodic coefficients, and to Euler–Bernoulli systems in the same context.
doi_str_mv 10.1007/s10884-017-9625-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2128608923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128608923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAq9HJx37kKEVtoeKh9SQS0uysbmmTmmzF9te7ZQVPnmYO7_MO8xByyeGGAxS3iUNZKga8YDoXGdsfkQHPCsG0EOK420EBK4RWp-QspSUA6FLqAXmafyB9smkVvujEV_hNra_obIOujXZFR2Hr20TrEOm08WgjHdt1s2qDb6yns11qcZ1o8PQVril_OycntV0lvPidQ_LycD8fjdn0-XEyupsyJ3neslxwx7NyoZTA2oJVEqtMOAtOgtUulyXPF4ggu6cWQmoONpfKusoi1kpKOSRXfe8mhs8tptYswzb67qQRXJQ5lFocUrxPuRhSilibTWzWNu4MB3OwZnprprNmDtbMvmNEz6Qu698x_jX_D_0A-29ubw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128608923</pqid></control><display><type>article</type><title>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</title><source>Springer Nature - Complete Springer Journals</source><creator>Howard, Peter ; Jung, Soyeun ; Kwon, Bongsuk</creator><creatorcontrib>Howard, Peter ; Jung, Soyeun ; Kwon, Bongsuk</creatorcontrib><description>Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on R with periodic coefficients, and to Euler–Bernoulli systems in the same context.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-017-9625-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Boundary conditions ; Hamiltonian functions ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Journal of dynamics and differential equations, 2018-12, Vol.30 (4), p.1703-1729</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</citedby><cites>FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</cites><orcidid>0000-0001-8162-2247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-017-9625-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-017-9625-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Howard, Peter</creatorcontrib><creatorcontrib>Jung, Soyeun</creatorcontrib><creatorcontrib>Kwon, Bongsuk</creatorcontrib><title>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on R with periodic coefficients, and to Euler–Bernoulli systems in the same context.</description><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Hamiltonian functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAq9HJx37kKEVtoeKh9SQS0uysbmmTmmzF9te7ZQVPnmYO7_MO8xByyeGGAxS3iUNZKga8YDoXGdsfkQHPCsG0EOK420EBK4RWp-QspSUA6FLqAXmafyB9smkVvujEV_hNra_obIOujXZFR2Hr20TrEOm08WgjHdt1s2qDb6yns11qcZ1o8PQVril_OycntV0lvPidQ_LycD8fjdn0-XEyupsyJ3neslxwx7NyoZTA2oJVEqtMOAtOgtUulyXPF4ggu6cWQmoONpfKusoi1kpKOSRXfe8mhs8tptYswzb67qQRXJQ5lFocUrxPuRhSilibTWzWNu4MB3OwZnprprNmDtbMvmNEz6Qu698x_jX_D_0A-29ubw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Howard, Peter</creator><creator>Jung, Soyeun</creator><creator>Kwon, Bongsuk</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8162-2247</orcidid></search><sort><creationdate>20181201</creationdate><title>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</title><author>Howard, Peter ; Jung, Soyeun ; Kwon, Bongsuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Hamiltonian functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Peter</creatorcontrib><creatorcontrib>Jung, Soyeun</creatorcontrib><creatorcontrib>Kwon, Bongsuk</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Peter</au><au>Jung, Soyeun</au><au>Kwon, Bongsuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><spage>1703</spage><epage>1729</epage><pages>1703-1729</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on R with periodic coefficients, and to Euler–Bernoulli systems in the same context.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-017-9625-z</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8162-2247</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1040-7294
ispartof Journal of dynamics and differential equations, 2018-12, Vol.30 (4), p.1703-1729
issn 1040-7294
1572-9222
language eng
recordid cdi_proquest_journals_2128608923
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Boundary conditions
Hamiltonian functions
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
title The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Maslov%20Index%20and%20Spectral%20Counts%20for%20Linear%20Hamiltonian%20Systems%20on%20%5B0,%201%5D&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Howard,%20Peter&rft.date=2018-12-01&rft.volume=30&rft.issue=4&rft.spage=1703&rft.epage=1729&rft.pages=1703-1729&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-017-9625-z&rft_dat=%3Cproquest_cross%3E2128608923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128608923&rft_id=info:pmid/&rfr_iscdi=true