The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]
Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger sy...
Gespeichert in:
Veröffentlicht in: | Journal of dynamics and differential equations 2018-12, Vol.30 (4), p.1703-1729 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1729 |
---|---|
container_issue | 4 |
container_start_page | 1703 |
container_title | Journal of dynamics and differential equations |
container_volume | 30 |
creator | Howard, Peter Jung, Soyeun Kwon, Bongsuk |
description | Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on
R
with periodic coefficients, and to Euler–Bernoulli systems in the same context. |
doi_str_mv | 10.1007/s10884-017-9625-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2128608923</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128608923</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wFvAq9HJx37kKEVtoeKh9SQS0uysbmmTmmzF9te7ZQVPnmYO7_MO8xByyeGGAxS3iUNZKga8YDoXGdsfkQHPCsG0EOK420EBK4RWp-QspSUA6FLqAXmafyB9smkVvujEV_hNra_obIOujXZFR2Hr20TrEOm08WgjHdt1s2qDb6yns11qcZ1o8PQVril_OycntV0lvPidQ_LycD8fjdn0-XEyupsyJ3neslxwx7NyoZTA2oJVEqtMOAtOgtUulyXPF4ggu6cWQmoONpfKusoi1kpKOSRXfe8mhs8tptYswzb67qQRXJQ5lFocUrxPuRhSilibTWzWNu4MB3OwZnprprNmDtbMvmNEz6Qu698x_jX_D_0A-29ubw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128608923</pqid></control><display><type>article</type><title>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</title><source>Springer Nature - Complete Springer Journals</source><creator>Howard, Peter ; Jung, Soyeun ; Kwon, Bongsuk</creator><creatorcontrib>Howard, Peter ; Jung, Soyeun ; Kwon, Bongsuk</creatorcontrib><description>Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on
R
with periodic coefficients, and to Euler–Bernoulli systems in the same context.</description><identifier>ISSN: 1040-7294</identifier><identifier>EISSN: 1572-9222</identifier><identifier>DOI: 10.1007/s10884-017-9625-z</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applications of Mathematics ; Boundary conditions ; Hamiltonian functions ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations</subject><ispartof>Journal of dynamics and differential equations, 2018-12, Vol.30 (4), p.1703-1729</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science & Business Media 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</citedby><cites>FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</cites><orcidid>0000-0001-8162-2247</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10884-017-9625-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10884-017-9625-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Howard, Peter</creatorcontrib><creatorcontrib>Jung, Soyeun</creatorcontrib><creatorcontrib>Kwon, Bongsuk</creatorcontrib><title>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</title><title>Journal of dynamics and differential equations</title><addtitle>J Dyn Diff Equat</addtitle><description>Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on
R
with periodic coefficients, and to Euler–Bernoulli systems in the same context.</description><subject>Applications of Mathematics</subject><subject>Boundary conditions</subject><subject>Hamiltonian functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><issn>1040-7294</issn><issn>1572-9222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWKs_wFvAq9HJx37kKEVtoeKh9SQS0uysbmmTmmzF9te7ZQVPnmYO7_MO8xByyeGGAxS3iUNZKga8YDoXGdsfkQHPCsG0EOK420EBK4RWp-QspSUA6FLqAXmafyB9smkVvujEV_hNra_obIOujXZFR2Hr20TrEOm08WgjHdt1s2qDb6yns11qcZ1o8PQVril_OycntV0lvPidQ_LycD8fjdn0-XEyupsyJ3neslxwx7NyoZTA2oJVEqtMOAtOgtUulyXPF4ggu6cWQmoONpfKusoi1kpKOSRXfe8mhs8tptYswzb67qQRXJQ5lFocUrxPuRhSilibTWzWNu4MB3OwZnprprNmDtbMvmNEz6Qu698x_jX_D_0A-29ubw</recordid><startdate>20181201</startdate><enddate>20181201</enddate><creator>Howard, Peter</creator><creator>Jung, Soyeun</creator><creator>Kwon, Bongsuk</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8162-2247</orcidid></search><sort><creationdate>20181201</creationdate><title>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</title><author>Howard, Peter ; Jung, Soyeun ; Kwon, Bongsuk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-621c158b442efa0a43ed52ca0c30a9c63816bee03108b23910a634acdaeef4333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Applications of Mathematics</topic><topic>Boundary conditions</topic><topic>Hamiltonian functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howard, Peter</creatorcontrib><creatorcontrib>Jung, Soyeun</creatorcontrib><creatorcontrib>Kwon, Bongsuk</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of dynamics and differential equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howard, Peter</au><au>Jung, Soyeun</au><au>Kwon, Bongsuk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]</atitle><jtitle>Journal of dynamics and differential equations</jtitle><stitle>J Dyn Diff Equat</stitle><date>2018-12-01</date><risdate>2018</risdate><volume>30</volume><issue>4</issue><spage>1703</spage><epage>1729</epage><pages>1703-1729</pages><issn>1040-7294</issn><eissn>1572-9222</eissn><abstract>Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on
R
with periodic coefficients, and to Euler–Bernoulli systems in the same context.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10884-017-9625-z</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0001-8162-2247</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-7294 |
ispartof | Journal of dynamics and differential equations, 2018-12, Vol.30 (4), p.1703-1729 |
issn | 1040-7294 1572-9222 |
language | eng |
recordid | cdi_proquest_journals_2128608923 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Boundary conditions Hamiltonian functions Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations |
title | The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1] |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T01%3A28%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Maslov%20Index%20and%20Spectral%20Counts%20for%20Linear%20Hamiltonian%20Systems%20on%20%5B0,%201%5D&rft.jtitle=Journal%20of%20dynamics%20and%20differential%20equations&rft.au=Howard,%20Peter&rft.date=2018-12-01&rft.volume=30&rft.issue=4&rft.spage=1703&rft.epage=1729&rft.pages=1703-1729&rft.issn=1040-7294&rft.eissn=1572-9222&rft_id=info:doi/10.1007/s10884-017-9625-z&rft_dat=%3Cproquest_cross%3E2128608923%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128608923&rft_id=info:pmid/&rfr_iscdi=true |