The Maslov Index and Spectral Counts for Linear Hamiltonian Systems on [0, 1]

Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger sy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of dynamics and differential equations 2018-12, Vol.30 (4), p.1703-1729
Hauptverfasser: Howard, Peter, Jung, Soyeun, Kwon, Bongsuk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Working with general linear Hamiltonian systems on [0, 1], and with a wide range of self-adjoint boundary conditions, including both separated and coupled, we develop a general framework for relating the Maslov index to spectral counts. Our approach is illustrated with applications to Schrödinger systems on R with periodic coefficients, and to Euler–Bernoulli systems in the same context.
ISSN:1040-7294
1572-9222
DOI:10.1007/s10884-017-9625-z