Multiplicative Latent Force Models

Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-11
Hauptverfasser: Tait, Daniel J, Worton, Bruce J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tait, Daniel J
Worton, Bruce J
description Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent force models achieve this dual aim by specifying a parsimonious linear evolution equation which an additive latent Gaussian process (GP) forcing term. In this work we extend the latent force framework to allow for multiplicative interactions between the GP and the latent states leading to more control over the geometry of the trajectories. Unfortunately inference is no longer straightforward and so we introduce an approximation based on the method of successive approximations and examine its performance using a simulation study.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2128304419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2128304419</sourcerecordid><originalsourceid>FETCH-proquest_journals_21283044193</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8i3NKcksyMlMTizJLEtV8EksSc0rUXDLL0pOVfDNT0nNKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjQyMLYwMTE0NLY-JUAQBnny3S</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2128304419</pqid></control><display><type>article</type><title>Multiplicative Latent Force Models</title><source>Free E- Journals</source><creator>Tait, Daniel J ; Worton, Bruce J</creator><creatorcontrib>Tait, Daniel J ; Worton, Bruce J</creatorcontrib><description>Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent force models achieve this dual aim by specifying a parsimonious linear evolution equation which an additive latent Gaussian process (GP) forcing term. In this work we extend the latent force framework to allow for multiplicative interactions between the GP and the latent states leading to more control over the geometry of the trajectories. Unfortunately inference is no longer straightforward and so we introduce an approximation based on the method of successive approximations and examine its performance using a simulation study.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Bayesian analysis ; Computer simulation ; Gaussian process ; Linear evolution equations ; Specifications</subject><ispartof>arXiv.org, 2018-11</ispartof><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Tait, Daniel J</creatorcontrib><creatorcontrib>Worton, Bruce J</creatorcontrib><title>Multiplicative Latent Force Models</title><title>arXiv.org</title><description>Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent force models achieve this dual aim by specifying a parsimonious linear evolution equation which an additive latent Gaussian process (GP) forcing term. In this work we extend the latent force framework to allow for multiplicative interactions between the GP and the latent states leading to more control over the geometry of the trajectories. Unfortunately inference is no longer straightforward and so we introduce an approximation based on the method of successive approximations and examine its performance using a simulation study.</description><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Gaussian process</subject><subject>Linear evolution equations</subject><subject>Specifications</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRQ8i3NKcksyMlMTizJLEtV8EksSc0rUXDLL0pOVfDNT0nNKeZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjQyMLYwMTE0NLY-JUAQBnny3S</recordid><startdate>20181101</startdate><enddate>20181101</enddate><creator>Tait, Daniel J</creator><creator>Worton, Bruce J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20181101</creationdate><title>Multiplicative Latent Force Models</title><author>Tait, Daniel J ; Worton, Bruce J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_21283044193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Gaussian process</topic><topic>Linear evolution equations</topic><topic>Specifications</topic><toplevel>online_resources</toplevel><creatorcontrib>Tait, Daniel J</creatorcontrib><creatorcontrib>Worton, Bruce J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tait, Daniel J</au><au>Worton, Bruce J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Multiplicative Latent Force Models</atitle><jtitle>arXiv.org</jtitle><date>2018-11-01</date><risdate>2018</risdate><eissn>2331-8422</eissn><abstract>Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent force models achieve this dual aim by specifying a parsimonious linear evolution equation which an additive latent Gaussian process (GP) forcing term. In this work we extend the latent force framework to allow for multiplicative interactions between the GP and the latent states leading to more control over the geometry of the trajectories. Unfortunately inference is no longer straightforward and so we introduce an approximation based on the method of successive approximations and examine its performance using a simulation study.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2018-11
issn 2331-8422
language eng
recordid cdi_proquest_journals_2128304419
source Free E- Journals
subjects Bayesian analysis
Computer simulation
Gaussian process
Linear evolution equations
Specifications
title Multiplicative Latent Force Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A49%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Multiplicative%20Latent%20Force%20Models&rft.jtitle=arXiv.org&rft.au=Tait,%20Daniel%20J&rft.date=2018-11-01&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2128304419%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2128304419&rft_id=info:pmid/&rfr_iscdi=true