Multiplicative Latent Force Models

Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2018-11
Hauptverfasser: Tait, Daniel J, Worton, Bruce J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian modelling of dynamic systems must achieve a compromise between providing a complete mechanistic specification of the process while retaining the flexibility to handle those situations in which data is sparse relative to model complexity, or a full specification is hard to motivate. Latent force models achieve this dual aim by specifying a parsimonious linear evolution equation which an additive latent Gaussian process (GP) forcing term. In this work we extend the latent force framework to allow for multiplicative interactions between the GP and the latent states leading to more control over the geometry of the trajectories. Unfortunately inference is no longer straightforward and so we introduce an approximation based on the method of successive approximations and examine its performance using a simulation study.
ISSN:2331-8422